lGBM
2016-10-19 10:26:27 0 举报
AI智能生成
LGB模型(LightGBM)是一种基于决策树算法的高效、快速的机器学习模型。它采用了基于直方图的决策树学习方法,可以处理大规模的数据集,并且具有较低的内存占用和较高的训练速度。与传统的决策树算法相比,LGB模型使用了基于梯度的单边采样(GOSS)和互斥特征捆绑(EFB)等技术,能够更好地处理稀疏数据和类别不平衡问题。此外,LGB模型还支持多种优化目标函数和正则化方法,可以根据具体应用场景进行灵活配置。总之,LGB模型是一种强大、实用的机器学习工具,适用于各种类型的数据分析和预测任务。
作者其他创作
大纲/内容
OverallConfig
Metric
ObjectiveFunction
TreeLearner
SerialTreeLearner
data_partition_
function
Init
Split
DataPartition
function
Split
Feature
Application
function
Run
InitTrain
Train
InitPredict
Predict
InitTrain
Network::Init
GbdtConfig::Init
Boosting::CreateBoosting
ObjectFunction::CreateObjectiveFunction
LoadingData
obj->Init()
boosting->Init()
boosting->AddDataset() for testing
Train
boosting->Train()
InitPredict
LoadModel
Predict
Predictor()
predictor.predict
config_
train_data_
valid_data_
train_metric_
boosting_
objective_fun_
Dataset
features_
used_feature_map_
num_features_
num_total_features_
num_data_
metadata_
random_
max_bin_
used_data_indices
Boosting
GBDT
Init
TreeLearner::CreateTreeLearner
tree_learner_->Init
new ScoreUpdater
Train
Boosting()
Bagging
trainOneTree
tree_learner->Train()
BeforeTrain
new tree
loop to split
BeforeFindBestSplit
FindBestSplit
FindBestSplitForLeaves
Split
tree->Shrinkage
UpdateScore
UpdateScoreOutOfBag
model.push_back(new_tree)
function
Init
Train
AddDataset
Tree
split_feature_real_
split_feature(node)
split_feature_
threshold_
thresh_value(node)
left_child_
left_child(node)
right_child_
right_child(node)
bin.h
HistogramBinEntry
sum_gradient
sum_hessian
data_size
BinMapper
num_bin_
bin_upper_bound_
is_trival_
sparse_rate_
function
ValueToBin
BinToValue
findBin
对数组进行分bin
OrderedBin
BinIterator
Bin
function
push()
getIterator
saveBinaryToFile
loadFromMemory
sizeInByte
numData
constructHistogram
split()
createBin
createDenseBin
createSparseBin
子类
SparseBin
0 条评论
下一页