Personnel Selection
2018-06-09 16:13:24 4 举报
AI智能生成
Personnel Selection
作者其他创作
大纲/内容
<h2>Key Words </h2>
<h2><span style="font-weight: normal;">job performance, testing, validity, adverse impact, ability,personality </span></h2>
<h2><b>Abstract </b></h2>
<h2><b>Contents </b></h2>
<h2><span style="font-weight: normal;">introduction</span></h2>
<h2><span style="font-weight: normal;">can we predict traditional outcome measures better<br>because of better understanding of the cirterion domain and criterion measurement? </span></h2>
<h3><span style="font-weight: normal;">Conceptualization of the Criterion Domain</span></h3>
<h3><span style="font-weight: normal;">Predictor-Criterion Matching</span></h3>
<h3><span style="font-weight: normal;">The Role of Time in Criterion Measurement</span></h3>
<h3><span style="font-weight: normal;">Predicting Performance Over Time</span></h3>
<h3><span style="font-weight: normal;">Criterion Measurement</span></h3>
<h2><span style="font-weight: normal;">can we predict traditional outcome measures better<br>because of improved measurement of existing predictor methods or constructs? </span></h2>
<h3><span style="font-weight: normal;">Measure the Same Construct with Another Method</span></h3>
<h3><span style="font-weight: normal;">Improve Construct Measurement</span></h3>
<h3><span style="font-weight: normal;">Increase Contextualization</span></h3>
<h3><span style="font-weight: normal;">Reduce Response Distortion</span></h3>
<h3><span style="font-weight: normal;">Impose Structure</span></h3>
<h2><span style="font-weight: normal;">can we predict traditional outcome measures better<br>because of identification and measurement of new predictor methods or constructs? </span></h2>
<h3><span style="font-weight: normal;">Emotional Intelligence</span></h3>
<h3><span style="font-weight: normal;">Situational Judgment Tests</span></h3>
<h2><span style="font-weight: normal;">can we predict traditional outcome measures better<br>because of improved identification of features that moderate or mediate relationships? </span></h2>
<h3><span style="font-weight: normal;">Situation-Based Moderators</span></h3>
<h3><span style="font-weight: normal;">Person-Based Moderators </span></h3>
<h3><span style="font-weight: normal;">Individual Predictors</span></h3>
<h3><span style="font-weight: normal;">Mediators </span></h3>
<h2><span style="font-weight: normal;">can we predict traditional outcome measures better<br>because of clearer understanding of relationships between predictors andcriteria? </span></h2>
<h3><span style="font-weight: normal;">Incremental Validity </span></h3>
<h2><span style="font-weight: normal;">identification and prediction of new outcome variables </span></h2>
<h2><span style="font-weight: normal;">improved abiliy to estimate predictor-criterion relationships </span></h2>
<h3><span style="font-weight: normal;">Linearity</span></h3>
<h3><span style="font-weight: normal;">Meta-Analysis</span></h3>
<h3><span style="font-weight: normal;">Range Restriction</span></h3>
<h2><span style="font-weight: normal;">improved understanding of subgroup differences, fairness,<br>bias, and the legal defensibility of our selection systems </span></h2>
<h3><span style="font-weight: normal;">Subgroup Mean Differences</span></h3>
<h3><span style="font-weight: normal;">Mechanisms for Reducing Differences</span></h3>
<h3><span style="font-weight: normal;">Forecasting Validity and Adverse Impact</span></h3>
<h3><span style="font-weight: normal;">Differential Prediction</span></h3>
<h2><span style="font-weight: normal;">improved administrative ease with which selecton systems can be used </span></h2>
<h2><span style="font-weight: normal;">improved measuement of and insight into consequences of applicant reactions </span></h2>
<h3><span style="font-weight: normal;">Consequences of Applicant Reactions</span></h3>
<h3><span style="font-weight: normal;">Methodological Issues</span></h3>
<h3><span style="font-weight: normal;">Influencing Applicant Reactions</span></h3>
<h3><span style="font-weight: normal;">Measurement of Applicant Reactions</span></h3>
<h2><span style="font-weight: normal;">improved decision-maker acceptance of selection systems </span></h2>
<h2>Conclusion</h2>
收藏
0 条评论
下一页