CPU(cache & cache line)
2021-06-29 21:17:55 0 举报
登录查看完整内容
CPU工作原理
作者其他创作
大纲/内容
L3
L2
L1 D
Core4
PCIe
L1 I
Wireless
SATA
Core2
Core5
DMI
Hard drive
典型的情况是,内核把全部内存都视为\"回写\"类型(write-back),从而获得最好的性能。在回写模式下,内存的最小访问单元为一个缓存线(cache line),在Core 2中是64字节。当程序想读取内存中的一个字节时,处理器会从L1/L2 cache读取包含此字节的整条缓存线的内容。当程序做写入内存操作时,处理器只是修改cache中的对应缓存线,而不会更新主存中的信息。之后,当真的需要更新主存时,处理器会把那个被修改了的缓存线整体放到总线上,一次性写入内存。所以大部分的请求事务,其数据长度字段都是11(REQ[1:0]),对应64 字节。下图展示了当cache中没有对应数据时,内存读取访问的过程:
Ethernet
cache line
front side bus(FSB)
当CPU运转起来以后,它便会通过L1 cache和L2 cache对系统中的主存进行读写访问。cache使用的是静态存储器(SRAM)。相对于系统主存中使用的动态存储器(DRAM),cache读写速度快得多、造价也高昂得多。cache一般被放置在CPU芯片的内部,加之使用昂贵高速的存储器,使其给CPU带来的延迟非常低。在指令层次上的优化(instruction-level optimization),其效果是与优化后代码的大小息息相关。由于使用了高速缓存技术(caching),那些能够整体放入L1/L2 cache中的代码,和那些在运行时需要不断调入/调出(marshall into/out of)cache的代码,在性能上会产生非常明显的差异。 正常情况下,当CPU操作一块内存区域时,其中的信息要么已经保存在L1/L2 cache,要么就需要将之从系统主存中调入cache,然后再处理。如果是后一种情况,我们就碰到了第一个瓶颈,一个大约250个时钟周期的延迟。在此期间如果CPU没有其他事情要做,则往往是处在停机状态的(stall)。为了给大家一个直观的印象,我们把CPU的一个时钟周期看作一秒。那么,从L1 cache读取信息就好像是拿起桌上的一张草稿纸(3秒);从L2 cache读取信息则是从身边的书架上取出一本书(14秒);而从主存中读取信息则相当于走到办公楼下去买个零食(4分钟)。
北桥收到物理内存访问请求之后
Core3
Core6
1、 如果应用程序想要尽可能高的运行速度,就应该把会被一起访问的数据尽量组织在同一条缓存线中。一旦这条缓存线被载入,之后的读取操作就会加快很多,不再需要额外的内存访问了。2、 对于回写式内存访问,作用于一条缓存线的任何内存操作都一定是原子的(atomic)。这种能力是由处理器的L1 cache提供的,所有数据被同时读写,中途不会被其他处理器或线程打断。特别的,32位和64位的内存操作,只要不跨越缓存线的边界,就都是原子操作。3、 前端总线是被所有的agent所共享的。这些agent在开启一个事务之前,必须先进行总线使用权的仲裁。而且,每一个agent都需要侦听总线上所有的事务,以便维持cache的一致性。因此,随着部署更多的、多核的处理器到Intel计算机,总线竞争问题会变得越来越严重。为解决这个问题,Core i7将处理器直接连接于内存,并以点对点的方式通信,取代之前的广播方式,从而减少总线竞争。
DMI: 连接南北桥
内存
Internet
Southbridge chip
Northbridge chip
Core1
内存映射表
0 条评论
回复 删除
下一页