CNN-Syllabus
2021-09-08 19:23:33   1  举报             
     
         
 AI智能生成
  CNN前世今生脑图
    作者其他创作
 大纲/内容
  Definition    
     Use Convolution Operation in place of General Matrix Multiplication  
     Neural Network  
     Deal with Visual Imagery Originally  
     Structure Timeline     
     Channel Boosting    
     Channel Boosted CNN    
     2018  
     Attention    
     CBAM    
     2018  
     Attention    
     Residual Attention Module     
     2018  
     Channel Boosting    
     Channel Boosted CNN    
     2018  
     Feature Map Exploitation    
     SE Net    
     2018  
     Width Exploitation    
     Pyramidal Net    
     2017  
     Width Exploitation    
     Poly Net    
     2017  
     Width Exploitation    
     Wide ResNet    
     2017  
     Width Exploitation    
     ResNext    
     2017  
     Depth Revolution    
     FractalNet    
     2017  
     Depth Revolution    
     DenseNet    
     2016  
     Feature Map Exploitation    
     CMPE-SE    
     2018  
     Multi-Path Connectivity  
     Depth Revolution    
     Highway Net    
     2015  
     Width Exploitation    
     ResNext    
     2017  
     Skip Connections    
     FractalNet    
     2017  
     Parameter Optimisztion    
     Feature visualisation     
     zfNet    
     2013  
     Skip Connections    
     Dense Net    
     2016  
     Depth Exploitation  
     Spatial Exploitation  
     Programming ImageNet    
     2010  
     NVIDIA
    
     2007  
     GPU Applied    
     2006  
     Max Pooling    
     2006  
     CNN Stagnation    
     Early 2000  
     Depth Revolution    
     Skip Connection    
     2015    
     ResNet    
     ResNet18  
     ENet    
     SegNet    
     FCN    
     DeconvNet    
     Deeplab    
     GCN  
     ResNet34  
     ResNet50  
     ResNet101  
     ResNet152  
     VGG    
     2014    
     Effective Receptive Field (Small Size Filters)    
     VGG-19  
     VGG-16  
     GoogleNet    
     2014    
     Factorization    
     Inception-ResNet-v2  
     Inception-ResNet-v1  
     Inception V4  
     Inception V3  
     BottleNeck    
     Inception V2  
     Inception V1    
     Inception Block    
     Parallelism    
     Spatial Exploitation  
     AlexNet    
     2012    
     Squeeze Net  
     Shuffile Net  
     Lenet5    
     1998  
     ConvNet    
     1989  
     Neocognitron    
     1979  
     Programming    
     PyTorch  
     Keras  
     Tensorflow  
     Problems    
     overfitting  
     子主题  
     Buzz words    
     Pooling    
     max Pooling    
     average Pooling    
     stochastic pooling  
     Pooling Size    
       
     Mask Matrix  
     Feature Map  
     Convolutional layers    
     an input layer    
     hidden layers    
     an output layer  
     Filter     
     Above 2D, Normally 3D  
     Kernel Size    
     2D  
     Stride  
     Padding  
     Dilation  
     Weights  
     Parameters  
     Parameter sharing  
     Local connectivity  
     Spatial arrangement  
     Early stopping  
     Added regularizer    
     weight decay    
     max norm constraints  
     Receptive Field  
     Devices    
     GPU    
     Xeon Phi    
     CPU  
     Fine-tuning  
     Human interpretable explanations  
     Residual Connection  
     Factorization  
     Downsamping  
     Upsampling  
     Attention  
     Feature Invariant  
     Normalisztion    
     Local Response Normalization  
     Data Augmentation  
     Optimizer    
     Exponentially weighted average  
     bias correction in exponentially weighted average  
     momentum  
     Nesterov Momentum  
     Adagrad  
     Adadelta  
     RMSprop  
     Adam  
     Convergence  
     Transfer  
     Gradient Descent    
     Batch gradient descent  
     Mini-batch gradient descent  
     stochastic gradient descent  
     Activation Function    
     ReLU    
     ReLU  
     ReLU6  
     SoftPlus  
     SoftMax  
     Tanh  
     Sigmoid  
     Bias_add  
     Dropout (Neuro)    
     dropout rate    
     range=[0,1)    
     empirally set to [0.3,0.5]    
     before dropout    
          
       
     after dropout    
         
         
         
       
     rescale rate    
     rescale rate = 1 / (1 - dropout rate)  
     DropConnect  
     DepthConcat  
     Forward  
     Backpropagation  
     Applications    
     Image recognition  
     Video analysis  
     Natural language processing  
     Anomaly Detection  
     Drug discovery  
     Health risk assessment  
     Biomarkers of aging discovery  
     Checkers game  
     Go  
     Time series forecasting  
     Cultural Heritage and 3D-datasets  
     Pooling layer  
     Loss layer  
     Activation layer  
     Fully connected layer  
    
 
 
 
 
  0 条评论
 下一页
  
   
   
   
  
  
  
  
  
  
  
  
  
  
 