数字基带传输系统商洪涛
2022-05-01 01:18:27 0 举报
AI智能生成
商洪涛作业
作者其他创作
大纲/内容
数字基带信号及其频谱特征
数字基带信号表示为随机脉冲序列:<span class="equation-text" contenteditable="false" data-index="0" data-equation="s(t)=\sum\limits_{s=-\infty}\limits^{\infty}s_n(t)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="s_n(t)=\begin{cases} g_1(t-nT_B) \quad 以概率P出现\\g_2(t-nT_B) \quad 以概率1-P出现 \end{cases}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="s_n(t)=v(t)+u(t)"><span></span><span></span></span>
稳态波:<span class="equation-text" contenteditable="false" data-index="0" data-equation="v(t)=\sum\limits_{s=-\infty}\limits^{\infty}[Pg_1(t-nT_B)+(1-P)g_2(t-nT_B)]=\sum\limits_{s=-\infty}\limits^{\infty}v_n(t)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="v(t)的功率谱密度"><span></span><span></span></span>:<span class="equation-text" contenteditable="false" data-index="1" data-equation="P_v(f)=\sum\limits_{s=-\infty}\limits^{\infty}|f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]|^2 \delta (f-mf_B)"><span></span><span></span></span>
交变波:<span class="equation-text" contenteditable="false" data-index="0" data-equation="u(t)=a_n[g_1(t-nT_B)+g_2(t-nT_B)]"><span></span><span></span></span> 其中<span class="equation-text" contenteditable="false" data-index="1" data-equation="a_n=\begin{cases} 1-P\quad 以概率P出现\\-P\quad \ \ \ \ 以概率1-P出现 \end{cases}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="u(t)"><span></span><span></span></span>的功率谱密度:<span class="equation-text" contenteditable="false" data-index="1" data-equation="P_u(f)=f_BP(1-P)|G_1(f)-G_2(f)|^2"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="s(t)"><span></span><span></span></span>的功率谱密度:<span class="equation-text" contenteditable="false" data-index="1" data-equation="P_s(f)=P_u(f)+P_v(f)=f_BP(1-P)|G_1(f)-G_2(f)|^2+ \sum\limits_{s=-\infty}\limits^{\infty}|f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]|^2 \delta (f-mf_B)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_s(f)"><span></span><span></span></span>表明
二进制随机脉冲序列的功率谱<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_s(f)"><span></span><span></span></span>包含连续谱(第一项)和可能包含离散谱(第二项)
连续谱总是存在的,因为<span class="equation-text" data-index="0" data-equation="g_1(t)" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="1" data-equation="g_2(t)" contenteditable="false"><span></span><span></span></span>不同,故有<span class="equation-text" contenteditable="false" data-index="2" data-equation="G_1(f) \neq G_2(f)"><span></span><span></span></span>
谱的形状取决于<span class="equation-text" data-index="0" data-equation="g_1(t)" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="1" data-equation="g_2(t)" contenteditable="false"><span></span><span></span></span>的频谱以及出现的概率<span class="equation-text" contenteditable="false" data-index="2" data-equation="P"><span></span><span></span></span>
离散谱是否存在,取决于<span class="equation-text" contenteditable="false" data-index="0" data-equation="g_1(t)"><span></span><span></span></span>和<span class="equation-text" contenteditable="false" data-index="1" data-equation="g_2(t)"><span></span><span></span></span>的波形及其出现的概率<span class="equation-text" contenteditable="false" data-index="2" data-equation="P"><span></span><span></span></span>
几种基本的基带信号波形
单极性
双极性
单极性归零(RZ)波形
双极性归零波形
相对码波形
差分波形
多电平波形
基带传输常用码型
要求
对代码的要求:原始消息代码必须编成适合于传输<br>用的码型
对所选码型的电波形要求:电波形应适合于基带系<br>统的传输
选择原则
不含直流,且低频分量尽量少<br>
应含有丰富的定时信息,以便于从接收码流中提取定时信号<br>
功率谱主瓣宽度窄,以节省传输频带<br>
不受信息源统计特性的影响,即能适应于信息源的变化<br>
具有内在的检错能力,即码型应具有一定规律性,以便利用这一规律性进行宏观监测<br>
编译码简单,以降低通信延时和成本
常用的传输码型
AMI码:传号交替反转码
优点
没有直流成分,且高、低频分量少
编译码电路简单,且可利用传号极性交替这一规律观察误码情况
如果它是AMI-RZ波形从中可以提取位定时分量
缺点
当原信码出现长连“0”串时,信号的电平长时间不跳变,造成提取定时信号的困难
<font color="#ff0000">HDB3码</font>: 3阶高密度双极性码
优点:保持AMI码的优点而克服其缺点,使连“0”个数不超过3个
缺点:编码比较复杂
双相码:也称曼彻斯特( Manchester)码
优点:含有丰富的位定时信息,且没有直流分量,编码过程也简单
缺点:占用带宽加倍,使频带利用率降低
差分双相码
密勒码:又称延迟调制码
CMI码: CMI码是传号反转码的简称
块编码<br>
nBmB码
nBmT码
数字基带码间串扰
两种误码原因
码间串扰
系统传输总特性不理想,导致前后码元的波形畸变并使前面波形出现很长的拖尾,从而对当前码元的判决造成干扰
信道加性噪声
数字基带信号传输模型
接收滤波器输出信号:<span class="equation-text" contenteditable="false" data-index="0" data-equation="r(t)=d(t)*h(t)+n_R(t)=\sum\limits_{n=-\infty}\limits^{\infty}a_nh(t-nT_s)+n_R(t)"><span></span><span></span></span><br>nR(t)是加性噪声n(t)经过接收滤波器后输出的噪声<br>
抽样判决:抽样判决器对r(t)进行抽样判决<br>在<span class="equation-text" contenteditable="false" data-index="0" data-equation="r(t)"><span></span><span></span></span>上抽样判决输出:<span class="equation-text" contenteditable="false" data-index="1" data-equation="r(kTs+t_0)=a_kh(t_0)+\sum\limits_{n\neq k}a_nh[(k-n)T_s+t_0]+n_R(kTs+t_0)"><span></span><span></span></span>
无码间串扰的基带传输特性
基本思想:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sum\limits_{n\neq k}a_nh[(k-n)T_s+t_0]=0"><span></span><span></span></span>
无码间串扰的时域条件:<span class="equation-text" contenteditable="false" data-index="0" data-equation="h(kT_s)=\begin{cases} 1 \quad k=0 \\ \\0 \quad k为其他整数\end{cases}"><span></span><span></span></span>
意义:若<span class="equation-text" contenteditable="false" data-index="0" data-equation="h(t)"><span></span><span></span></span>的抽样值除了在<span class="equation-text" contenteditable="false" data-index="1" data-equation="t=0"><span></span><span></span></span>时不为零外,在其他所有抽样点上均为零,就不存在码间串扰。
无码间串扰的频域条件:<span class="equation-text" data-index="0" data-equation="\frac{1}{T_s}\sum\limits_{i}H(\omega+\frac{2\pi i}{T_s})=1 \ \ \ \ \ \ |\omega|\leq \frac{\pi}{T_s}" contenteditable="false"><span></span><span></span></span><br><font color="#ff0000"><b>奈奎斯特(Nyquist)第一准则</b></font><br>
意义:一个实际的<span class="equation-text" contenteditable="false" data-index="0" data-equation="H(\omega)"><span></span><span></span></span>特性若能等效成一个理想(矩形)低通滤波器,则可实现无码间串扰
无码间串扰的传输特性的设计
理想低通特性:<span class="equation-text" contenteditable="false" data-index="0" data-equation="H(\omega)"><span></span><span></span></span>为理想低通型
冲击响应:
说明:<span class="equation-text" contenteditable="false" data-index="0" data-equation="h(t)"><span></span><span></span></span> 在 <span class="equation-text" contenteditable="false" data-index="1" data-equation="t=\pm kT_s \ (t\neq 0)"><span></span><span></span></span>有周期性零点,利用了这些零点。只要<br>接收端在<span class="equation-text" contenteditable="false" data-index="2" data-equation="t=kT_s"><span></span><span></span></span>时间点上抽样,就能实现无码间串扰
<span class="equation-text" contenteditable="false" data-index="0" data-equation="B=\frac{1}{2}T_s(hz)"><span></span><span></span></span>
以<span class="equation-text" data-index="0" data-equation="R_B=\frac{1}{T_s}" contenteditable="false"><font color="#ff0000"></font></span>速率进行传输,则不存在码间串扰
以高于<span class="equation-text" data-index="0" data-equation="\frac{1}{T_S}" contenteditable="false"><span></span><span></span></span>码元速率传送,存在码间串扰。<br>带宽<span class="equation-text" data-index="1" data-equation="B" contenteditable="false"><span></span><span></span></span>称为<b><font color="#ff0000">奈奎斯特带宽</font></b>,<span class="equation-text" data-index="2" data-equation="R_B" contenteditable="false"><span></span><span></span></span>为<b><font color="#ff0000">奈奎斯特速率</font></b>
最高频带利用率:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\eta=\frac{R_B}{B}=2\ (B/Hz)"><span></span><span></span></span>
余弦滚降特性
系统抗噪声性能
统计特性:<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(V)=\frac{1} {\sqrt{2\pi \sigma_n}}e^{{-V^2}/{2\sigma_n^2}}"><span></span><span></span></span>
<font color="#ff0000">二进制双极性基带系统</font>
总误码率:<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(e)=P(1)P(0|1)+P(0)P(1|0)"><span></span><span></span></span>
令<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{\partial P_e}{\partial V_d}=0"><span></span><span></span></span> 有最佳门限电平:<span class="equation-text" contenteditable="false" data-index="1" data-equation="V^*_d=\frac{\sigma^2_n}{2A}\ln \frac{P(0)}{P(1)}"><span></span><span></span></span>
二进制双极性信号且<span class="equation-text" data-index="0" data-equation="P(1)=P(0)=\frac{1}{2}" contenteditable="false"><span></span><span></span></span><br><font color="#ff0000">最佳门限电平:<span class="equation-text" data-index="1" data-equation="V^*_d=0" contenteditable="false"><span></span><span></span></span></font><br>总误码率:<span class="equation-text" data-index="2" data-equation="P_e=\frac{1}{2}[P(0|1)+P(1|0)]=\frac{1}{2}[1-erf(\frac{A}{\sqrt{2} \sigma_n})]=\frac{1}{2}erfc(\frac{A}{\sqrt{2} \sigma_n})" contenteditable="false"><span></span><span></span></span><br>
二进制单极性信号且<span class="equation-text" data-index="0" data-equation="P(1)=P(0)=\frac{1}{2}" contenteditable="false"><span></span><span></span></span><br><font color="#ff0000">最佳门限电平:<span class="equation-text" data-index="1" data-equation="V^*_d=\frac{A}{2} +\frac{\sigma^2_n}{A}\ln \frac{P(0)}{P(1)}=\frac{A}{2}" contenteditable="false"><span></span><span></span></span></font><br>总误码率:<span class="equation-text" data-index="2" data-equation="P_e=\frac{1}{2}erfc(\frac{A}{2\sqrt{2} \sigma_n})" contenteditable="false"><span></span><span></span></span><br>
眼图
收藏
0 条评论
下一页