浙江省专升本考试-常微分方程
2022-04-18 19:53:32 0 举报
AI智能生成
浙江省专升本考试-常微分方程
作者其他创作
大纲/内容
方程解的形式
微分方程概念及分类
概念
<span class="equation-text" contenteditable="false" data-index="0" data-equation="含有未知函数、未知函数的导数(微分)与自变量之间关系的方程,称为微分方程,注意其中最低要求是必须出现未知函数的导数"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="(微分)"><span></span><span></span></span>
分类
一阶微分方程
二阶微分方程
阶
微分方程出现未知函数的最高阶导数的阶数
解
代入微分方程可以使其两端成为恒等式的函数
通解
微分方程中含有独立的任意常数,任意常数的个数与微分方程的阶数相同
特解
不含任意常数的微分方程的解
初始条件
确定通解中任意常数的条件
初值问题
求微分方程满足初始条件特解的问题
一阶微分方程
可分离变量方程
方程特征
形如<span class="equation-text" contenteditable="false" data-index="0" data-equation="g(y)dy=f(x)dx的微分方程"><span></span><span></span></span>
解法
1.分离变量,将方程写成<span class="equation-text" contenteditable="false" data-index="0" data-equation="g(y)dy=f(x)dx的形式"><span></span><span></span></span>
2.取不定积分,<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{}^{} g(y) dy=\int_{}^{} f(x) dx,设积分后的G(x)=F(x)+C"><span></span><span></span></span>
3.求出通解,求由<span class="equation-text" contenteditable="false" data-index="0" data-equation="G(x)=F(x)+C"><span></span><span></span></span>所确定的<span class="equation-text" contenteditable="false" data-index="1" data-equation="y=\phi(x)"><span></span><span></span></span>,它们均是方程的通解,其中<span class="equation-text" contenteditable="false" data-index="2" data-equation="G(x)=F(x)+C为隐式通解"><span></span><span></span></span>,要写C为任意常数勿忘,C视情况变换lnc....
齐次方程
形如<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{dy}{dx} = F(\frac{y}{x})"><span></span><span></span></span>
解法
1.首先作变换<span class="equation-text" contenteditable="false" data-index="0" data-equation="u=\frac{y}{x}"><span></span><span></span></span>
2.则<span class="equation-text" contenteditable="false" data-index="0" data-equation="y=ux,\frac{dy}{dx}=x\cdot \frac{du}{dx} +u"><span></span><span></span></span>
3.将方程化为可分分离方程<span class="equation-text" contenteditable="false" data-index="0" data-equation="xdu-[F(u)-u]dx=0,再使用变量分离法求解"><span></span><span></span></span>
一阶线性微分方程
特征
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{dy}{dx}+P(x)y=Q(x)"><span></span><span></span></span>
线性:微分方程中关于<span class="equation-text" data-index="0" data-equation="\frac{dy}{dx}" contenteditable="false"><span></span><span></span></span>和y都是一次的
当<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q(x)=0,化为"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="\frac{dy}{dx}+P(x)y=Q(x)"><span></span><span></span></span>
通解形式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="y=Ce^{\int -P(x)dx},其中C为任意常数"><span></span><span></span></span>
当<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q(x)\neq 0,化为\frac{dy}{dx}+P(x)y=Q(x)"><span></span><span></span></span>
通解形式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="y=e^{\int -P(x)dx}[\int Q(x)\cdot e^{\int P(x)dx}dx+C],其中C为任意常数"><span></span><span></span></span>
二阶常线性微分方程解的结构
二阶线性微分方程一般形式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="y^{''}+P(x)y^{'}+Q(x)y=f(x)【1】"><span></span><span></span></span>
当<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x)=0时,方程化为"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="y^{''}+P(x)y^{'}+Q(x)y=0"><span></span><span></span></span>【2】成为对应的齐次方程,切记<span class="equation-text" contenteditable="false" data-index="2" data-equation="f(x)=0就是齐次方程"><span></span><span></span></span>
定理1
<span class="equation-text" contenteditable="false" data-index="0" data-equation="设y_1(x),y_2(x)是"><span></span><span></span></span>【2】的两个线性无关的特解(<span class="equation-text" contenteditable="false" data-index="1" data-equation="y_1(x)\neq ky_2(x)"><span></span><span></span></span>),则<span class="equation-text" contenteditable="false" data-index="2" data-equation="y=C_1y_1(x)+C_2y_2(x)是【2】的通解"><span></span><span></span></span>,<span class="equation-text" contenteditable="false" data-index="3" data-equation="C_1,C_2为任意常数"><span></span><span></span></span>
判断是是否线性无关,只要看<span class="equation-text" contenteditable="false" data-index="0" data-equation="y_1(x),y_2(x)两个函数的比是否是常数"><span></span><span></span></span>
线性相关,常数
线性无关,不是常数
定理2
<span class="equation-text" contenteditable="false" data-index="0" data-equation="设y^*(x)是【1】的特解,Y(x)是【2】的通解,那么y=y^*(x)+Y(x)是【1】的通解"><span></span><span></span></span>
通=齐通+非奇特
定理3
<span class="equation-text" contenteditable="false" data-index="0" data-equation="设y_1(x),y_2(x)是【1】的两个不同的通解,则y=y_1(x)-y_2(x)是【2】的一个特解"><span></span><span></span></span>
通-通=特
定理4(解、特解叠加原理)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="设y_1(x),y_2(x) 分别是方程y^{''}+P(x)y^{'}+Q(x)y=f_1(x),y^{''}+P(x)y^{'}+Q(x)y=f_2(x)的特解,则y=y_1(x)+y_2(x)是方程y^{''}+P(x)y^{'}+Q(x)y=f_1(x)+f_2(x)的特解"><span></span><span></span></span>
齐次线性微分方程的解符合叠加原理,解的线性组合仍为解;非齐次线性微分方程的线性组合未必是解
特+特=特
二阶常系数非齐次线性微分方程
特征方程
<span class="equation-text" contenteditable="false" data-index="0" data-equation="y^{''}+py^{'}+qy=0的特征方程r^2+pr+q=0的两个根r_1,r_2"><span></span><span></span></span>
韦达定理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="x_1+x_2=-\frac{b}{a}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="x_1\cdot x_2=\frac{c}{a}"><span></span><span></span></span>
特征根
<span class="equation-text" contenteditable="false" data-index="0" data-equation="r_{1,2}=\frac{-p\pm\sqrt{p^2-4q}}{2}"><span></span><span></span></span>
二阶常系数齐次线性微分方程的通解
<span class="equation-text" contenteditable="false" data-index="0" data-equation="r_1\neq r_2,通解为y=C_1e^{r_{1}x}+C_2e^{r_2 x}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="r_1=r_2,通解为y=(C_1+C_2x)e^{rx}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="r_1,_2=\alpha\pm \beta i,通解为y=e^{\alpha x}(C_1cos\beta x+C_2sin\beta x)"><span></span><span></span></span>
二阶常系数非齐次线性微分方程的特解
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x)=e^{\lambda x} P_m(x)"><span></span><span></span></span>
特解形式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="y^*=x^kQ(x)e^{\lambda x},其中Q(x)根据所给方程前系数设,3就设A,3x就设Ax+B..."><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="k按\lambda取\begin{cases}不是特征方程的根,0 \\是特种方程的单根,1 \\是特征方程的重根,2\end{cases}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x)=e^{\lambda x}[p_l(x)cos\omega x+p_n(x)sin\omega x]"><span></span><span></span></span>
特解形式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="y^*=x^ke^{\lambda x}[R^{(1)}_m(x)cos\omega x+R^{(2)}_m(x)sin\omega x],其中R^{(1)}_m(x),R^{(2)}_m(x),m=max\{l,n\},也就是系数选最大那个构建,1就设A,B..."><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="k按\lambda\pm\omega i取\begin{cases}不是特征方程的根,0 \\是特征方程的根,1 \end{cases}"><span></span><span></span></span>
求出特解<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x)^*特解形式代入所给齐次方程,通过同幂次比较法解出特解"><span></span><span></span></span>,一定求出来才可以和齐通解组合成为最终的通解
求解的话是指求出非齐特解再和奇特组合成为非齐通,根据隐藏的初始条件求出非齐通解的C,也就是全部都要求出来
特殊微分方程
欧拉方程
形如<span class="equation-text" contenteditable="false" data-index="0" data-equation="x^ny^{n}+P_1x^{n-1}y^{n-1}+...+P_{n-1} xy^{'}+P_ny=f(x),其中P_1,P_2...P_n为常数"><span></span><span></span></span>
解法:令<span class="equation-text" contenteditable="false" data-index="0" data-equation="x=e^t"><span></span><span></span></span>
详细解法
伯努利方程
<span class="equation-text" contenteditable="false" data-index="0" data-equation="形如y'+P(x)y=Q(x)y^n,其中n≠0并且n≠1,其中P(x),Q(x)为已知函数"><span></span><span></span></span>
解法:两边同时除<span class="equation-text" contenteditable="false" data-index="0" data-equation="y^n,在令z=y^{1-n}"><span></span><span></span></span>
详细解法
0 条评论
下一页