CAL-7-微分方程
2021-07-28 10:41:38 1 举报
AI智能生成
高等数学微积分第七章 微分方程 知识点梳理总结
作者其他创作
大纲/内容
基本概念
微分方程:含<font color="#F44336">导数</font>或<font color="#F44336">微分</font>的方程
常微分方程
偏微分方程
阶数:微分方程中所含导数、微分的最高阶数
解:使微分方程成立的函数称微分方程的解。不含任意常数的称为特解<br>若解中含的相互独立的<font color="#F44336">任意常数</font>的个数与阶数相等,则称此解为通解<br>
一阶微分方程<br><span class="equation-text" data-index="0" data-equation="dy/dx=f(x,y)" contenteditable="false"><span></span><span></span></span><br>
可分离变量的微分方程<br><span class="equation-text" data-index="0" data-equation="f(x,y)=g(x)h({\color{red}y})" contenteditable="false"><span></span><span></span></span><br>
<span class="equation-text" data-index="0" data-equation="\int\frac{\mathrm dy}{h(y)}=\int g(x)\mathrm dx+C" contenteditable="false"><span></span><span></span></span>
注意讨论:h(y)取0的可能性
注意讨论:C的取值范围
注意:不同情况下的解有时可以合并
注意:对数项的正负号
对形如 <span class="equation-text" data-index="0" data-equation="ln∣g(x,y)∣=\varphi(x,y)+C" contenteditable="false"><span></span><span></span></span> 的微分方程,可以通过变对数为指数,<br>同时改变常数<span class="equation-text" data-index="1" data-equation="c_2" contenteditable="false"><span></span><span></span></span>的取值范围来去掉绝对值。<br>对一阶线性微分方程通解同时,可以对 e 的右上角的指数同时去绝对值。<br>
齐次微分方程<br><span class="equation-text" data-index="0" data-equation="f(x,y)=φ(y/x)" contenteditable="false"><span></span><span></span></span><br>
令<span class="equation-text" data-index="0" data-equation="\frac yx=u" contenteditable="false"><span></span><span></span></span>,故<span class="equation-text" data-index="1" data-equation="y=xu" contenteditable="false"><span></span><span></span></span>,<span class="equation-text" data-index="2" data-equation="\frac{\mathrm dy}{\mathrm dx}=u+{\color{red}x}\frac{\mathrm du}{\mathrm dx}" contenteditable="false"><span></span><span></span></span><br>
<span class="equation-text" data-index="0" data-equation="令u+x\frac{du}{dx}=φ(u),有\frac{\mathrm du}{φ(u)-u}=\frac{\mathrm dx}x" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="结论:\int\frac{\mathrm du}{\varphi(u)-u}=\int\frac{\mathrm dx}x+C" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\int\frac{\mathrm du}{y'-u}=\int\frac{\mathrm dx}x+C" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="例:设位于第一象限的y=f(x)\\上任一点P(x,y)满足:其切线\\横截距与其法线纵截距和为0,\\且曲线过(1,0),求该曲线" contenteditable="false"><span></span><span></span></span>
<font color="#F44336">一阶齐次线性微分方程<br><span class="equation-text" data-index="0" data-equation="y'+P(x)y=0" contenteditable="false"><span></span><span></span></span><br></font>
讨论y的取0可能性<br>
dy/y=-P(x)dx
ln|y|=-∫P(x)dx+C
结论:<span class="equation-text" data-index="0" data-equation="\color{red}y=Ce^{-\int P(x)\mathrm dx}(C任意)" contenteditable="false"><span></span><span></span></span>
<font color="#F44336">一阶非齐次线性微分方程<br><span class="equation-text" data-index="0" data-equation="y'+P(x)y=Q(x)" contenteditable="false"><span></span><span></span></span><br></font>
<span class="equation-text" data-index="0" data-equation="dy/dx+P(x)y=Q(x)" contenteditable="false"><span></span><span></span></span>
对比<span class="equation-text" data-index="0" data-equation="dy/dx+P(x)y=0,解为y=Ce^{-\int P(x)\mathrm dx}(C任意)" contenteditable="false"><span></span><span></span></span>
考虑令c为c(x)(常数变易为函数),有<span class="equation-text" data-index="0" data-equation="y=C(x)e^{-\int P(x)\mathrm dx},dy=dC\times e^{-\int P(x)\mathrm dx}-C(x)P(x)e^{-\int P(x)\mathrm dx}" contenteditable="false"><span></span><span></span></span>
代入原方程,得<span class="equation-text" data-index="0" data-equation="dC(x)/dx=Q(x)e^{\int P(x)\mathrm dx}" contenteditable="false"><span></span><span></span></span>,积分得<span class="equation-text" data-index="1" data-equation="C(x)=\int Q(x)e^{\int P(x)\mathrm dx}+Const" contenteditable="false"><span></span><span></span></span>
于是有<span class="equation-text" data-index="0" data-equation="y=e^{-\int P(x)\mathrm dx}(\int Q(x)e^{\int P(x)\mathrm dx}\mathrm dx+{\color{red}Const})" contenteditable="false"><span></span><span></span></span><br>
结论:<span class="equation-text" data-index="0" data-equation="y=e^{\color{red}-\int P(x)\mathrm dx}(\int Q(x)e^{\color{red}\int P(x)\mathrm dx}\mathrm dx+{\color{red}Const})" contenteditable="false"><span></span><span></span></span><br>
注意指数部分互为相反数,外负内正<br>
<span class="equation-text" data-index="0" data-equation="例:求解y'+\sin y+x\cos x+x=0" contenteditable="false"><span></span><span></span></span><br>
*伯努利方程<br><span class="equation-text" data-index="0" data-equation="y'+P(x)y=Q(x)y^n" contenteditable="false"><span></span><span></span></span>
令 <span class="equation-text" data-index="0" data-equation="z=y^{1-n}," contenteditable="false"><span></span><span></span></span>便有<span class="equation-text" data-index="1" data-equation="\frac{\mathrm dz}{\mathrm dx}=(1-n)y^{-n}y'" contenteditable="false"><span></span><span></span></span><br>
<span class="equation-text" data-index="0" data-equation="\frac{\mathrm dz}{\mathrm dx}+(1-n)P(x)z=(1-n)Q(n)" contenteditable="false"><span></span><span></span></span><br>
结论:<span class="equation-text" data-index="0" data-equation="z=e^{-\int(1-n)P(x)\mathrm dx}(\int(1-n)Q(x)e^{\int(1-n)P(x)\mathrm dx}\mathrm dx +C\\y=z^{1/(1-n)}" contenteditable="false"><span></span><span></span></span><br>
可降阶高阶微分方程(3)
<span class="equation-text" data-index="0" data-equation="y^{(n)}=f(x)" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="f(x,y',y'')=0(缺y)" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="令y'=p,y''=dp/dx,故有{\color{red}一阶微分方程f(x,p,p')=0}" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="解出y'=p,并积分解得y,注意两重不定积分要区分常数项C_1,C_2" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="例:求方程y''+2xy'^2=0满足初始条件y(0)-1,y'(0)=-\frac 1 2的特解" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="f(y,y',y'')=0(缺显式x)" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="令y'=p,y''=dp/dx=(dp/dy)(dy/dx)=pdp/dy,\\即得{\color{red}一阶微分方程f(y,p,pdp/dy)=0}" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="例:求解yy''+y'^2=y'" contenteditable="false"><span></span><span></span></span><br>
注意观察<br>
<span class="equation-text" data-index="0" data-equation="例:已知y=y(x),满足y(0)=1,y'(x)>0,\\其上有一点P,过P分别做垂线和切线,\\与X轴围成的三角形面积为S_1,\\垂线、y(x),x/y轴围成的曲边梯形面积为S_2,\\满足2S_1-S_2=1;求y(x)" contenteditable="false"><span></span><span></span></span>
若换元后的方程非线性,<br>先将元换回去整理,<br>再尝可分离变量积分<br>
例:求<span class="equation-text" data-index="0" data-equation="y''+y'^2=1" contenteditable="false"><span></span><span></span></span>满足<span class="equation-text" data-index="1" data-equation="y(0)=y'(0)=0" contenteditable="false"><span></span><span></span></span>的特解<br>
例:求<span class="equation-text" data-index="0" data-equation="2y''=3y^2" contenteditable="false"><span></span><span></span></span>满足<span class="equation-text" data-index="1" data-equation="y(-2)=1,y'(-2)=1" contenteditable="false"><span></span><span></span></span>的特解
二阶线性微分方程<br>(高阶LDE)<br>
二阶齐次线性微分方程<br><span class="equation-text" data-index="0" data-equation="y''+P(x)y'+Q(x)y=0(*)" contenteditable="false"><span></span><span></span></span>
二阶非齐次线性微分方程<br><span class="equation-text" data-index="0" data-equation="y''+P(x)y'+Q(x)y=f(x)(**)" contenteditable="false"><span></span><span></span></span>
if <span class="equation-text" data-index="0" data-equation="f(x)=f_1(x)+f_2(x)" contenteditable="false"><span></span><span></span></span>,则可拆解为两个子方程:<br><span class="equation-text" data-index="1" data-equation="\left\{\begin{aligned}y''+P(x)y'+Q(x)y=f_1(x)(**')\\y''+P(x)y'+Q(x)y=f_2(x)(**'')\end{aligned}\right." contenteditable="false"><span></span><span></span></span><br>
解的结构(4)<br>
1. <span class="equation-text" data-index="0" data-equation="若\varphi_i(x)为(*)的解" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="则\sum\limits_{i}k_i\varphi_i(x)也是(*)的解" contenteditable="false"><span></span><span></span></span>
若<span class="equation-text" data-index="0" data-equation="\varphi_1(x),\varphi_2(x)不成比例,则k_1\varphi_1(x)+k_2\varphi_2(x)是(*)的通解" contenteditable="false"><span></span><span></span></span>
2. <span class="equation-text" data-index="0" data-equation="若\varphi_1(x),\varphi_0(x)分别为(*),(**)的特解" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="则\varphi_1(x)+\varphi_0(x)也是(**)的解" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="若\varphi_1(x)为(*)通解,则\varphi_1(x)+\varphi_0(x)是(**)的通解" contenteditable="false"><span></span><span></span></span>
3. <span class="equation-text" data-index="0" data-equation="若\varphi_1(x),\varphi_2(x)为(**)的特解" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="若\sum k_i=0\Leftrightarrow则\sum k_i\varphi_i(x)是(*)的解" contenteditable="false"><span></span><span></span></span><br>
特例:<span class="equation-text" data-index="0" data-equation="\varphi_1(x){\color{red}-}\varphi_2(x)是(*)的解" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="若\sum k_i=1\Leftrightarrow则\sum k_i\varphi_i(x)是(**)的解" contenteditable="false"><span></span><span></span></span>
4. <span class="equation-text" data-index="0" data-equation="若\varphi_1(x),\varphi_2(x)分别为(**')(**'')的特解" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="则\varphi_1(x){\color{red}+}\varphi_2(x)是(**)的解" contenteditable="false"><span></span><span></span></span>
线性微分方程解的叠加原理<br>
<span class="equation-text" data-index="0" data-equation="例:方程y'+P(x)y=Q(x)有两个解\\y_1=x+\sqrt{1+x^2},y_2=x-\sqrt{1+x^2},求P(x),Q(x)" contenteditable="false"><span></span><span></span></span>
特例:
二阶常系数齐次线性微分方程<br><span class="equation-text" data-index="0" data-equation="y''+py'+qy=0" contenteditable="false"><span></span><span></span></span><br>
<font color="#F44336">特征方程:</font><span class="equation-text" data-index="0" data-equation="{\color{red}\lambda^2+p\lambda+q=0},if \Delta\left\{\begin{aligned}&>0\Rightarrow\left\{\begin{aligned} y_1=e^{\lambda_1 x}\\y_2=e^{\lambda_2 x}\end{aligned}\right.\\&=0\Rightarrow\left\{\begin{aligned} y_1&=e^{\lambda x}\\y_2&=xe^{\lambda x}\end{aligned}\right.\\&<0\Rightarrow\left\{\begin{aligned}&\lambda=\alpha\pm i\beta\\& y_1=e^{\alpha x}\cos\beta x\\&y_2=e^{\alpha x}\sin\beta x\end{aligned}\right.\end{aligned}\right.\Rightarrow y=C_1y_1+C_2y_2" contenteditable="false"><span></span><span></span></span><br>
拓展:三阶线性微分方程<br><span class="equation-text" data-index="0" data-equation="y'''+py''+qy''+ry=0" contenteditable="false"><span></span><span></span></span><br>特征方程:<span class="equation-text" data-index="1" data-equation="\lambda^3+p\lambda^2+q\lambda+r=0" contenteditable="false"><span></span><span></span></span><br>根据特征方程根的情况(4)<br>
<span class="equation-text" data-index="0" data-equation="\lambda_1\neq\lambda_2\neq\lambda_3,实" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="y=\sum\limits_{i=1,2,3}C_ie^{\lambda_ix}" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\lambda_1=\lambda_2\neq\lambda_3,实" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="y=(C_1+C_2x)e^{\lambda_1x}+C_3e^{\lambda_3x}" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\lambda_1=\lambda_2=\lambda_3,实" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="y=(C_1+C_2x+C_3x^2)e^{\lambda_1x}" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\lambda_1,\lambda_2,虚,\lambda_3,实" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="y=(C_1\cos\beta+C_2\sin\beta)e^{\alpha x}+C_3e^{\lambda_3x}" contenteditable="false"><span></span><span></span></span>
二阶常系数非齐次线性微分方程<br><span class="equation-text" data-index="0" data-equation="y''+py'+qy=f(x)" contenteditable="false"><span></span><span></span></span><br>
考虑解的结构:y=(*)通解+(**)特解<br>
特征方程:<span class="equation-text" data-index="0" data-equation="\lambda^2+p\lambda+q=0" contenteditable="false"><span></span><span></span></span>求出齐次部分通解
求特解<br>
Case1.<span class="equation-text" data-index="0" data-equation="f(x)=P_n(x)e^{kx}" contenteditable="false"><span></span><span></span></span><br>(一般n≤2,可能k=0)<br>
令特解<span class="equation-text" data-index="0" data-equation="y_0=Q_n(x,a,b...)e^{kx}" contenteditable="false"><span></span><span></span></span><br><font color="#F44336">若k是特征方程的i重根,则额外再乘<span class="equation-text" data-index="1" data-equation="x^i" contenteditable="false"><span></span><span></span></span></font><br>代入原方程,待定系数法求a, b...<br>
Case2.<br><span class="equation-text" data-index="0" data-equation="f(x)=e^{kx}[P_1(x)\cos lx+P_2(x)\sin lx]" contenteditable="false"><span></span><span></span></span><br>*二次用半角公式降次<br>
令特解<span class="equation-text" data-index="0" data-equation="y_0=[Q_1(x,a,b...)\cos lx+Q_2(x,a,b...)\sin lx]e^{kx}" contenteditable="false"><span></span><span></span></span><br><font color="#F44336">若<span class="equation-text" data-index="1" data-equation="k+il" contenteditable="false"><span></span><span></span></span>是特征方程的<span class="equation-text" data-index="2" data-equation="p" contenteditable="false"><span></span><span></span></span>重根,则额外再乘<span class="equation-text" data-index="3" data-equation="x^p" contenteditable="false"><span></span><span></span></span></font><br>代入原方程,待定系数法求a, b...<br>
两部分相加得到非齐次通解
根据解的组成可以判断根的情况
指数部分的系数是特征值或其整体<br>是非齐部分特解的一部分,如果代入<br>原方程不能恒成立,则必是特征值<br>
出现三角函数就有虚根,虚根必成对出现<br>
<span class="equation-text" data-index="0" data-equation="例:已知y=3e^x+2e^x\sin x是方程\\y'''+py''+qy'+ry=0的特解,求方程。" contenteditable="false"><span></span><span></span></span>
例:求<span class="equation-text" data-index="0" data-equation="y''+y=3x+\sin x" contenteditable="false"><span></span><span></span></span>的特解形式<br>
出现带x的指数,则有重根或该部分是非齐特解
<span class="equation-text" data-index="0" data-equation="例:求y''-2y'=2x-1+xe^{2x}的特解形式" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="例:已知y=(2+x)e^{2x}是方程\\y''+py'+qy=0特解,求方程" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="例:已知y=(1+x)e^{x}+3e^{2x}是方程\\y''+ay'+by=ce^x特解,求方程" contenteditable="false"><span></span><span></span></span>
根据非齐次部分的组成反推解的结构
解题思路<br>
含反函数的微分方程<br>
<span class="equation-text" data-index="0" data-equation="例:\\设x=x(y)可导,且满足方程\\1)把方程化为y=f(x)\\2)求满足初始条件y(0)=0,\\y'(0)=3/2的特解" contenteditable="false"><span></span><span></span></span>
合理利用:<span class="equation-text" data-index="0" data-equation="\frac{\mathrm dx}{\mathrm dy}=\frac{1}{y'}" contenteditable="false"><span></span><span></span></span>
非线性微分方程的处理
部分化成<span class="equation-text" data-index="0" data-equation="\varphi'(\psi(y,y'))" contenteditable="false"><span></span><span></span></span>并换元
<span class="equation-text" data-index="0" data-equation="求解yy'-y^2=1" contenteditable="false"><span></span><span></span></span>
整体化成<span class="equation-text" data-index="0" data-equation="\varphi'(\psi(y,y'))" contenteditable="false"><span></span><span></span></span>
求<span class="equation-text" data-index="0" data-equation="yy''-y'^2=y^2" contenteditable="false"><span></span><span></span></span>满足<br><span class="equation-text" data-index="1" data-equation="y(0)=1,y'(0)=0" contenteditable="false"><span></span><span></span></span>的特解<br>
<span class="equation-text" data-index="0" data-equation="求解yy''-y'^2=y^2" contenteditable="false"><span></span><span></span></span>
方程左侧含不可分离的三角函数的处理<br>
关于x的三角函数<br>
例:求<span class="equation-text" data-index="0" data-equation="y'+\tan x y=\cos x" contenteditable="false"><span></span><span></span></span>的通解<br>
有公式直接用公式,慢慢整理即可
关于y的三角函数
<span class="equation-text" data-index="0" data-equation="例:求解y'+\sin y+x\cos x+x=0" contenteditable="false"><span></span><span></span></span><br>
含积分的隐藏微分方程<br>
<span class="equation-text" data-index="0" data-equation="例:设f(x)可导,且\int_0^1[f(x)+xf(xt)]\mathrm dt=1,求f(x)" contenteditable="false"><span></span><span></span></span><br>
凡是定积分结果与目标函数自变量有关的,优先考虑寻找x=0或积分区间为一个点的情况,可以求出一个自由变量C<br>
按公式积分含绝对值<br>
对于<span class="equation-text" data-index="0" data-equation="e^{\int P(x)dx}" contenteditable="false"><span></span><span></span></span>中,出现<span class="equation-text" data-index="1" data-equation="e^{\ln|...|}" contenteditable="false"><span></span><span></span></span>的情况
可见<span class="equation-text" data-index="0" data-equation="\left\{\begin{aligned}&e^{\int P(x)dx}=e^{\ln|...|}=\pm...\\&e^{-\int P(x)dx}=\pm\frac 1{...}\end{aligned}\right." contenteditable="false"><span></span><span></span></span>
代入原积分公式,可见若里外绝对值部分<br>同正同负则可以消掉正负号,而常数C<br>可以吸收正负号,则绝对值可以去掉<br>
对于其他不知...正负的情况,一律不能去掉绝对值
<font color="#F44336">结论:一阶线性微分方程的绝对值可去<br></font>
对于非公式解方程出现ln|...|的情况
一般不可去,正负号消不掉就移项<br>
疑似偏微分方程<br>
识别:P(x,y)dx+Q(x,y)dy=0,P(x,y)Q(x,y)形式对称且交叉偏导<span class="equation-text" data-index="0" data-equation="\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}" contenteditable="false"><span></span><span></span></span>
即:可以视P,Q为某函数R对x、对y的偏导,原方程可化为<span class="equation-text" data-index="0" data-equation="\frac{\partial R}{\partial x}\mathrm dx+\frac{\partial R}{\partial y}\mathrm dy=0" contenteditable="false"><span></span><span></span></span>
实际上是全微分方程
0 条评论
下一页