七下第一章--整式的乘除
2022-07-19 11:54:45 0 举报
AI智能生成
北师大版七年级下数学第一章
作者其他创作
大纲/内容
unit1-3 幂
<font color="#000000"><span class="equation-text" contenteditable="false" data-index="0" data-equation="同底数幂"><span></span><span></span></span></font>的乘法
同底数幂相乘:<span class="equation-text" contenteditable="false" data-index="0" data-equation="a^m"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="\cdot"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="a^n"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="3" data-equation="a^{m+n}"><span></span><span></span></span>
光在真空中的速度大约是3<span class="equation-text" contenteditable="false" data-index="0" data-equation="\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="10^8m/s"><span></span><span></span></span>
在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧1.3<span class="equation-text" contenteditable="false" data-index="0" data-equation="\times10^8kg"><span></span><span></span></span>的煤所产生的能量。我国960万<span class="equation-text" contenteditable="false" data-index="1" data-equation="km^2"><span></span><span></span></span>的土地上,一年从太阳得到的能量相当于燃烧多少千克的煤所产生的能量?(结果用科学计数法表示)
某种细菌,每分钟分裂成2个,经过5min,1个细菌分裂成多少个?
这些细菌再继续分裂t min后共分裂成多少个?
幂的乘方和积的乘方
地球的极半径6357千米,赤道半径6378千米,平均半径6371千米(地球赤道周长约4万千米),木星、太阳的半径分别约是地球的10倍和<span class="equation-text" contenteditable="false" data-index="0" data-equation="10^2倍"><span></span><span></span></span>
球的体积公式V=<span class="equation-text" contenteditable="false" data-index="0" data-equation="{4 \over 3}\pi"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="r^3"><span></span><span></span></span>
木星体积是地球的<span class="equation-text" contenteditable="false" data-index="0" data-equation="10^3倍和(10^2)^3倍"><span></span><span></span></span>
幂的乘方:<span class="equation-text" contenteditable="false" data-index="0" data-equation="(a^m)^n="><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="a^{mn}"><span></span><span></span></span>
子主题
积的乘方(底数不同,指数相同):<span class="equation-text" contenteditable="false" data-index="0" data-equation="(ab)^n=a^nb^n"><span></span><span></span></span>
逆运算在题目中的应用
拓广:<span class="equation-text" contenteditable="false" data-index="0" data-equation="2²\times3\times5²"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="1" data-equation="(2\times5)^{2}\times3"><span></span><span></span></span>
拓广:<span class="equation-text" contenteditable="false" data-index="0" data-equation="2^4"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="3^2\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="3" data-equation="5^3"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="2^{3+1}"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="\times3^{3-1}"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="\times5^3"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="2^{2+2}\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="3^2"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="\times5^{2+1}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="(abc)^{n}"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="同底数幂" contenteditable="false"><span></span><span></span></span>的<font color="#00ff00">除法</font>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a^m\div"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="a^n="><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="a^{m-n}(a≠0)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a^0=1"><span></span><span></span></span>(a≠0)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a^{-p}="><span></span><span></span></span>1/<span class="equation-text" contenteditable="false" data-index="1" data-equation="a^p"><span></span><span></span></span>(a≠0)
小于1的正数的科学计数法,可以表示为a<span class="equation-text" contenteditable="false" data-index="0" data-equation="\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="10^n"><span></span><span></span></span>(1≤a<10),n是负整数
微米(μm):细胞的直径1μm,1μm=1<span class="equation-text" contenteditable="false" data-index="0" data-equation="\times10^{-6}"><span></span><span></span></span>m=0.000 001m
纳秒(ns): 1ns=1<span class="equation-text" contenteditable="false" data-index="0" data-equation="\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="10^{-9}"><span></span><span></span></span>s=0.000 000 001s
PM2.5:指大气中d≤2.5μm的细颗粒物,对人体健康和大气环境质量有害,也称为可入肺细颗粒物。
纳米(nm):长度单位,1nm=<span class="equation-text" contenteditable="false" data-index="0" data-equation="10^{-9}"><span></span><span></span></span>m,即10亿分之一米,直径为1nm的球与乒乓球相比,相当于乒乓球与地球相比。
纳米技术,是指在0.1-100nm的范围内,通过直接操纵和安排原子、分子来创造新物质,例如,采用纳米技术,可以在一块方糖大小的磁盘上存放一个国家图书馆的所有信息。还可以制造成“纳米医生”,微小到可以注入人体的血管中。
unit4-7 整式
整式的乘法
单项式*单项式
系数、相同字母的幂分别相乘。然后,其余字母连同指数不变,作为积的因式
单项式*多项式
根据分配律用单项式*多项式的每一项,然后,再把所得的积相加。
多项式*多项式
先用一个多项式的每一项乘另一个多项式的每一项,再把所有的积相加
<span class="equation-text" data-index="0" data-equation="拓广:" contenteditable="false"><span></span><span><font color="#0000ff"></font></span></span><font color="#f44336">(a+b+c)<u>(c+d+e</u>)</font>
a<u> (c+d+e)</u>+b<u>(c+d+e</u>)+c<u>(c+d+e)</u>
平方差公式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="(a+b)(a-b)=a²-b²"><span></span><span></span></span>
逆运算
完全平方公式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="(a+b)^2"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="=a²+2ab+b²"><span></span><span></span></span>自己叙述
逆运算
贾宪三角/杨辉三角/帕斯卡三角
<font color="#f44336">(a+b)³</font>
<font color="#f44336">拓广:(a+b+c)²</font>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="(a-b)^2"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="=a²-2ab+b²"><span></span><span></span></span>自己叙述
把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,连同它的指数一起作为商的一个因数
复习拓展
黑洞是恒星演化的最后阶段,中心燃料耗尽,在外壳的重压之下,核心开始坍塌,直到最后形成体积小、密度大的星体,如果这一星体的质量超过太阳质量的3倍,那么就会引发另一次大坍塌,当这种收缩是的它的半径达到“施瓦氏半径”后,引力就会变得相当强大,连“光”也不能逃脱出来,从而形成一个看不见的星体--黑洞,施瓦氏半径的计算公式: <span class="equation-text" contenteditable="false" data-index="0" data-equation="R={2GM \over c²}"><span></span><span></span></span>。其中,G是万有引力常数<span class="equation-text" contenteditable="false" data-index="1" data-equation="G=6.67\times10^{-11}N\cdot"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="m^2/kg^2"><span></span><span></span></span>, M表示星球的质量,c=3<span class="equation-text" contenteditable="false" data-index="3" data-equation="\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="4" data-equation="10^8"><span></span><span></span></span>m/s (光速)。已知太阳的质量为2<span class="equation-text" contenteditable="false" data-index="5" data-equation="\times"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="6" data-equation="10^{30}kg,计算太阳的是瓦氏半径"><span></span><span></span></span>(Schwartzschild radius)
求<span class="equation-text" contenteditable="false" data-index="0" data-equation="(2-1)(2+1)"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="(2^2+1)(2^4+1)...(2^{32}+1)+1的个位数字"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="2^n的个位数以2、4、6、8依次循环"><span></span><span></span></span>
收藏
0 条评论
下一页