热力学与统计物理(part2)
2024-03-20 14:40:20 1 举报
AI智能生成
热力学与统计物理量子统计部分
作者其他创作
大纲/内容
第五章 量子统计力学
5.1 密度矩阵
引入密度矩阵
对于系综中的第k个系统,其量子态为<span class="equation-text" contenteditable="false" data-index="0" data-equation="\psi^k(t)=\sum_n a_n^k(t) \varphi_n"><span></span><span></span></span>
根据公式,系数<span class="equation-text" data-index="0" data-equation="a_m^k(t) " contenteditable="false"><span></span><span></span></span>的物理意义是系综的第k个系统处在状态<span class="equation-text" contenteditable="false" data-index="1" data-equation="|\phi_m>"><span></span><span></span></span>中 时的概率幅
则该系综的密度矩阵写为:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\rho_{m n}(t)=\frac{1}{\mathscr{N}} \sum_{k=1}^N\left\{a_m^k(t) a_n^{k *}(t)\right\}"><span></span><span></span></span><br>
关键理解:密度矩阵元是矩阵元位置所对应的两个本征态几率幅的乘积的系综平均
密度矩阵的性质
对称性<span class="equation-text" contenteditable="false" data-index="0" data-equation="\rho_{m n}=\rho_{n m}"><span></span><span></span></span>
Trace等于1:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sum_n \rho_{n n}=1"><span></span><span></span></span>
密度矩阵的演化
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mathrm{i} \hbar \dot{\hat{\rho}}=[\hat{H}, \hat{\rho}] ."><span></span><span></span></span><br>
由密度矩阵计算力学量的系综平均值
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\langle G\rangle=\sum_{m, n} \rho_{m n} G_{n m}=\sum_m(\hat{\rho} \hat{G})_{m m}=\operatorname{Tr}(\hat{\rho} \hat{G})"><span></span><span></span></span>
5.2 各种统计系综
微正则系综
密度矩阵是对角矩阵
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}\rho_{m n}=\rho_n \delta_{m n}, \\\rho_n= \begin{cases}1 / \Gamma & \text { 对每个可及态, } \\0 & \text { 对所有其余状态. }\end{cases}\end{gathered}"><span></span><span></span></span>
正则系综
密度矩阵是对角矩阵
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\rho_{m n}=\rho_n \delta_{m n}\\\rho_n=C \exp \left(-\beta E_n\right) ; \quad n=0,1,2, \cdots"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\hat{\rho} &=\sum_n\left|\varphi_n\right\rangle \frac{1}{Q_N(\beta)} \mathrm{e}^{-\beta E_n}\left\langle\varphi_n\right| \\&=\frac{1}{Q_N(\beta)} \mathrm{e}^{-\beta \hat{H}} \sum_n\left|\varphi_n\right\rangle\left\langle\varphi_n\right| \\&=\frac{1}{Q_N(\beta)} \mathrm{e}^{-\beta \hat{H}}=\frac{\mathrm{e}^{-\beta \hat{H}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}}\right)}\end{aligned}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\langle G\rangle_N &=\operatorname{Tr}(\hat{\rho} \hat{G})=\frac{1}{Q_N(\beta)} \operatorname{Tr}\left(\hat{G} \mathrm{e}^{-\beta \hat{H}}\right) \\&=\frac{\operatorname{Tr}\left(\hat{G} \mathrm{e}^{-\beta \hat{H}}\right)}{\operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}}\right)}\end{aligned}"><span></span><span></span></span><br>
巨正则系综
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\hat{\rho}=\frac{1}{\mathscr{Q}(\mu, V, T)} \mathrm{e}^{-\beta(\hat{H}-\mu \hat{n})}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mathscr{Q}(\mu, V, T)=\sum_{r, s} \mathrm{e}^{-\beta\left(E_r-\mu N_s\right)}=\operatorname{Tr}\left\{\mathrm{e}^{-\beta(\hat{H}-\mu \hat{n})}\right\}"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\langle G\rangle &=\frac{1}{\mathscr{Q}(\mu, V, T)} \operatorname{Tr}\left(\hat{G} \mathrm{e}^{-\beta \hat{H}} \mathrm{e}^{\beta \mu \hat{n}}\right) \\&=\frac{\sum_{N=0}^{\infty} z^N\langle G\rangle_N Q_N(\beta)}{\sum_{N=0}^{\infty} z^N Q_N(\beta)}\end{aligned}"><span></span><span></span></span><br>
注:后续过程中密度矩阵的存在感非常低,这是因为我们都只是再考虑能量这个力学量,而又是在能量表象中计算,所以求密度矩阵和求配分函数几乎能达到一样的效果,所以后续基本上只要求配分函数即可。<br>只有到考虑其他力学量的演化问题时,密度矩阵的威力才得以体现<br>
5.3 实例
一般步骤:
1、写出哈密顿量
2、计算哈密顿量表象中exp(-βH)的矩阵元
3、求exp(-βH)的trace
5.4 费米系统和玻色系统
出发点:<b><font color="#e74f4c">以上考虑的是单个粒子,没有是否可分辨带来的影响;以下考虑多个粒子组成的整体,需要考虑不可分辨性,即交换对称性</font></b>,即,对于量子系统,一种单粒子态的分布就是一个状态,处于不同单粒子态的粒子进行交换并不会带来新的状态。<br>具体来说,交换对称性分为两类,交换对称和交换反对称,依次,所有粒子系统可以分为两类,分别称为玻色系统和费米系统
必须引入交换算符P以及波函数的交换对称性<br>
交换算符
对于一个多粒子波函数(注意,此时还没考虑其交换对称性,所以写出来的并不是合理的波函数)<span class="equation-text" data-index="0" data-equation="\psi_E(\boldsymbol{q})=\prod_{m=1}^{n_1} u_1(m) \prod_{m=n_1+1}^{n_1+n_2} u_2(m) \prod_{m=n_1+n_2+1}^{n_1+n_2+n_3} u_3(m)\cdots\cdots" contenteditable="false"><span></span><span></span></span><br>交换算符作用在其上,结果是用(P1,P2,·· ·,PN) 这组数来代换 (1,2, · · ·,N) 这组数.最终的波函数将变为:<span class="equation-text" contenteditable="false" data-index="1" data-equation="P \psi_E(\boldsymbol{q})=\prod_{m=1}^{n_1} u_1(P m) \prod_{m=n_1+1}^{n_1+n_2} u_2(P m) \cdots\prod_{m=n_1+n_2+1}^{n_1+n_2+n_3} u_3(Pm)\cdots\cdots"><span></span><span></span></span><br>
波函数的交换对称性
如果是交换正对称性:<span class="equation-text" contenteditable="false" data-index="0" data-equation="P \psi=\psi \text {, 对于所有的 } P"><span></span><span></span></span>
波函数形如:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\psi_S(\boldsymbol{q})=\text { 常数 } \times \sum_P P \psi_{\text {不考虑交换对称性 }}(\boldsymbol{q})"><span></span><span></span></span>,
如果使交换反对称性:<span class="equation-text" contenteditable="false" data-index="0" data-equation="P \psi= \begin{cases}+\psi & \text { 若 } P \text { 为偶排列 } \\ -\psi & \text { 若 } P \text { 为奇排列 }\end{cases}"><span></span><span></span></span>
波函数形如:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\psi_A(\boldsymbol{q})=\text { 常数 } \times \sum_P \delta_P P \psi_{\text {不考虑交换对称性 }}(\boldsymbol{q}),"><span></span><span></span></span>
其中<span class="equation-text" contenteditable="false" data-index="0" data-equation="\delta_P"><span></span><span></span></span>表示取<span class="equation-text" data-index="1" data-equation="\mp1" contenteditable="false"><span></span><span></span></span> 区别于是奇排列还是偶排列
或者用Slater行列式<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\psi_A(\boldsymbol{q})=\text { 常数 } \times\left|\begin{array}{cccc}u_i(1) & u_i(2) & \cdots & u_i(N) \\u_j(1) & u_j(2) & \cdots & u_j(N) \\\vdots & \vdots & \cdots & \cdots \\\vdots & \vdots & \cdots & \cdots \\\vdots & \vdots & \cdots & \cdots \\u_l(1) & u_l(2) & \cdots & u_l(N)\end{array}\right|"><span></span><span></span></span>
讨论一下吉布斯修正
<b><font color="#f1e4a2">吉布斯修正是一个矫枉过正、一刀切的修正</font></b>:现在给定一个<span class="equation-text" data-index="0" data-equation="\{ n_i\}" contenteditable="false"><span></span><span></span></span>的分布(表示“第1个能级上占据数位n1,......,第i个能级上占据数为ni”),在经典统计中,在两个不同的单粒子能量态中由交换粒子所得到的任何排列,都被认为导致了一种新的、物理上性质不同的微观态,所以<span class="equation-text" data-index="1" data-equation="\{ n_i\}" contenteditable="false"><span></span><span></span></span>分布的权重因子此时已经被设定为<span class="equation-text" data-index="2" data-equation="W_{\{ n_i\}}=\frac{N !}{n_{1} ! n_{2} ! \cdots}" contenteditable="false"><span></span><span></span></span>。<br>对于量子力学而言,在全同粒子中间相互交换,即使在不同的单粒子能量态中进行交换,都不应得到系统的任何新的微观态,所以任何分布的权重因子都为1(或者0):<span class="equation-text" data-index="3" data-equation="W_q\left\{n_i\right\} \equiv 1" contenteditable="false"><span></span><span></span></span><br>而吉布斯修正将权重因子变为:<span class="equation-text" data-index="4" data-equation="W_{\{ n_i\}}=\frac{1}{n_{1} ! n_{2} ! \cdots}" contenteditable="false"><span></span><span></span></span>,这就是矫枉过正了,可见只有当<span class="equation-text" data-index="5" data-equation="\{n_1\}" contenteditable="false"><span></span><span></span></span>中的每一个<span class="equation-text" data-index="6" data-equation="n_i" contenteditable="false"><span></span><span></span></span>都接近0,才能得到符合物理的结果<br>
费米系统服从费米统计
具有交换反对称性,由反对称波函数来描述
特质:系统中的诸粒子必须全部处于不同的单粒子态
事后发现,具有交换反对称性的粒子自旋都是半整数
玻色系统服从玻色统计
子主题
事后发现,具有交换对称性的粒子自旋都是整数
5.5 自由粒子系统的密度矩阵和配分函数
出发点:在坐标表象中写出密度矩阵的代表元,重点在于考虑不可分辨性后构造N个粒子的量子态的波函数;构造的核心在于对交换算符P求和
一个记号的含义:构造多粒子系统波函数时,P1,P2,P3...表示对坐标的排列,Pk1、Pk2、Pk3...表示对波矢的排列,
得到密度矩阵元的表达式,内涵对两个自由粒子波函数的乘积的积分,最后变成对<b>一系列相同函数</b>累乘的重排求和<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}\left\langle\boldsymbol{r}_1, \cdots, \boldsymbol{r}_N\left|\mathrm{e}^{-\beta \hat{H}}\right| \boldsymbol{r}_1, \cdots, \boldsymbol{r}_N\right\rangle \\=\frac{1}{N ! \lambda^{3 N}} \sum_P \delta_P\left[f\left(P \boldsymbol{r}_1-\boldsymbol{r}_1\right) \cdots f\left(P \boldsymbol{r}_N-\boldsymbol{r}_N\right)\right] \\f(\boldsymbol{r})=\exp \left(-\pi r^2 / \lambda^2\right)\end{gathered}"><span></span><span></span></span><br>
对求和P做处理<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\sum_P=1 \pm \sum_{i<j} f_{i j} f_{j i}+\sum_{i<j<k} f_{i j} f_{j k} f_{k i} \pm \cdots"><span></span><span></span></span><br>
当rij远大于平均热波长时,fij迅速衰减为零<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="Q_N(V, T) \equiv \operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}}\right) \simeq \frac{1}{N ! \lambda^{3 N}} \int 1\left(\mathrm{~d}^{3 N} r\right)=\frac{1}{N !}\left(\frac{V}{\lambda^3}\right)^N"><span></span><span></span></span><br>
当粒子间距离与热波长相当时,即便我们这不考虑粒子间相互作用,粒子间的空间相关依然存在,可以用一个统计势来等效这个空间相关
统计势:费米子之间统计势恒大于零,体现为排斥作用,玻色子则反过来。当粒子间距接近热波长时,这个势迅速衰减为0
第六章 简单量子气体一般性统计理论
本章讨论研究无相互作用、不可分辨的粒子的一般量子统计方法
6.1 微正则系统中的量子理想气体
出发点:我们通过一个分为许多“单元”的单粒子能级群这样一个模型来计算玻色、狄拉克和可分辨粒子的状态数。<br>非常重要的一点,这里引入了小能级的概念,使得大能级(“单元”)中的占据态变得“可分辨起来”,这像是向经典靠拢了,不过这确实有利于计算<br>
计算能级分布的微观状态数<span class="equation-text" contenteditable="false" data-index="0" data-equation="W\{n_i\}"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\omega(i)" contenteditable="false"><span></span><span></span></span>是能谱中第i个单元可能具有的不同微观态数<br>此单元包含被接纳<span class="equation-text" data-index="1" data-equation="g_i" contenteditable="false"><span></span><span></span></span> 个小能级<br>其中准备要填充的<span class="equation-text" data-index="2" data-equation="n_i" contenteditable="false"><span></span><span></span></span>个粒子<br>那么,服从B.E.分布的状态数为(隔板法):<span class="equation-text" data-index="3" data-equation="w_{\text {B.E. }}(i)=\frac{\left(n_i+g_i-1\right) !}{n_{i} !\left(g_i-1\right) !}" contenteditable="false"><span></span><span></span></span><br>服从F.D.分布的状态数为(从gi中选出ni个位置,组合数<span class="equation-text" data-index="4" data-equation="C_{gi}^{ni}" contenteditable="false"><span></span><span></span></span>):<span class="equation-text" contenteditable="false" data-index="5" data-equation="w_{\text {F.D. }}(i)=\frac{g_{i} !}{n_{i} !\left(g_i-n_i\right) !}"><span></span><span></span></span><br>
进一步,整体的微观状态数为对所有的单元求和:<br><span class="equation-text" data-index="0" data-equation="W_{\text {B.E. }}\left\{n_i\right\}=\prod_i \frac{\left(n_i+g_i-1\right) !}{n_{i} !\left(g_i-1\right) !}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="W_{\text {F.D. }}\left\{n_i\right\}=\prod_i \frac{g_{i} !}{n_{i} !\left(g_i-n_i\right) !}" contenteditable="false"><span></span><span></span></span><br>此外可以很容易的考虑出此picture中经典情况的微观状态数<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="W_{\text {M.B. }}\left\{n_i\right\}=\prod_i \frac{\left(g_i\right)^{n_i}}{n_{i} !}"><span></span><span></span></span><br>
系统的熵:<span class="equation-text" data-index="0" data-equation="S(N, V, E)=k \ln \Omega(N, V, E)=k \ln \left[\sum_{\left\{n_i\right\}}^{\prime} W\left\{n_i\right\}\right]" contenteditable="false"><span></span><span></span></span><br>后续采用了最概然分布来近似这个结果:<span class="equation-text" contenteditable="false" data-index="1" data-equation="S(N, V, E) \simeq k \ln W\left\{n_i^*\right\}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="n_i^*=\frac{g_i}{\mathrm{e}^{\alpha+\beta \varepsilon_i}+a}\\\frac{n_i^*}{g_i}=\frac{1}{\mathrm{e}^{\alpha+\beta \varepsilon_i}+a}"><span></span><span></span></span><br>
<span class="equation-text" data-index="0" data-equation="g_i" contenteditable="false"><span></span><span></span></span>表示能级的简并度,亦或者真正量子态的数目;<br><span class="equation-text" contenteditable="false" data-index="1" data-equation="n_i"><span></span><span></span></span>表示该能级上占据粒子数的数目
a=0 for 可分辨粒子or经典极限;<br>a=-1 for boson<br>a=1 for fermion<br>
用微观状态数推导热力学量
<span class="equation-text" data-index="0" data-equation="P V=\frac{k T}{a} \sum_i\left[g_i \ln \left\{1+a \mathrm{e}^{-\alpha-\beta \varepsilon_i}\right\}\right]" contenteditable="false"><span></span><span></span></span><br>or<br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\frac{PV}{kT}=\frac{1}{a} \sum_i\left[g_i \ln \left\{1+a \mathrm{e}^{-\alpha-\beta \varepsilon_i}\right\}\right]"><span></span><span></span></span><br>
6.2 正则和巨正则系综中的量子<b>理想气体<br>(即无相互作用体系,后面两章均为此类型<br>最后part3才考虑相互作用体系)<br></b>
出发点:<br>配分函数:<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q_N(V, T)=\sum_{\left\{n_{\varepsilon}\right\}}^{\prime} g\left\{n_{\varepsilon}\right\} \exp \left(-\beta \sum_{\varepsilon} n_{\varepsilon} \varepsilon\right)"><span></span><span></span></span>
其中<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}&g_{\text {B.E. }\left\{n_{\varepsilon}\right\}}=1, \\&g_{\text {F.D. }}\left\{n_{\varepsilon}\right\}= \begin{cases}1, & \text { 若所有的 } n_{\varepsilon}=0 \text { 或 } 1, \\0, & \text { 其他场合. }\end{cases} \\&g_{\text {M.B. }}\left\{n_{\varepsilon}\right\}=\prod_{\epsilon} \frac{1}{n_{\varepsilon} !} .\end{aligned}"><span></span><span></span></span>
注意玻尔兹曼分布的权重因子应当这样理解:<br>虽然把这些粒子看成可分辨粒子,但是为了让热力学量合理,不得不除以错误的因子“N!”。不过即便是错误的,但在经典极限下仍然正确、
麦克斯韦-玻尔兹曼分布:
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}Q_N(V, T) &=\frac{1}{N !}\left[\sum_{\varepsilon} \mathrm{e}^{-\beta \varepsilon}\right]^N \\&=\frac{1}{N !}\left[Q_1(V, T)\right]^N,\end{aligned}"><span></span><span></span></span>
注意,①<span class="equation-text" contenteditable="false" data-index="0" data-equation="\epsilon"><span></span><span></span></span>为单粒子态的某一本征能量,对它遍历则应取遍所有单粒子态的本征能量<br>②这里其实是之前已经用过的结论,只不过在此处进行了严格的证明,证明过程如下:<br><span class="equation-text" data-index="1" data-equation="\begin{aligned}Q_N(V, T) & =\sum_{\left\{n_{\varepsilon}\right\}}^{\prime}\left[\left(\prod_{\varepsilon} \frac{1}{n_{\varepsilon} !}\right) \prod_{\varepsilon}\left(\mathrm{e}^{-\beta \varepsilon}\right)^{n_{\varepsilon}}\right] \\& =\frac{1}{N !} \sum_{\left\{n_{\varepsilon}\right\}}^{\prime}\left[\frac{N !}{\prod_{\varepsilon} n_{\varepsilon} !} \prod_{\varepsilon}\left(\mathrm{e}^{-\beta \varepsilon}\right)^{n_{\varepsilon}}\right]\end{aligned}" contenteditable="false"><span></span><span></span></span><br>再通过多项式定理得到左式<br>
Q1可以直接用态密度的一般近似公式来求:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}Q_1(V, T) & \equiv \sum_{\varepsilon} \mathrm{e}^{-\beta \varepsilon} \approx \frac{2 \pi V}{h^3}(2 m)^{3 / 2} \int_0^{\infty} \mathrm{e}^{-\beta \varepsilon} \varepsilon^{1 / 2} \mathrm{~d} \varepsilon \\&=V / \lambda^3,\end{aligned}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mathscr{Q}(z, V, T)=\sum_{N=0}^{\infty} z^N Q_N(V, T)=\exp \left(z V / \lambda^3\right)"><span></span><span></span></span>,此处推导跳步很多,利用了指数函数的展开形式
F.D.分布和B.E.分布
出发点:<span class="equation-text" data-index="0" data-equation="n_i" contenteditable="false"><span></span><span></span></span>的求和限制条件使得配分函数<span class="equation-text" data-index="1" data-equation="Q_N" contenteditable="false"><span></span><span></span></span>的计算非常麻烦,但如果可以考虑对粒子数的遍历,同时交换两个求和指标的话,情况会变得简单,所以考虑巨配分函数
对于给定粒子数的体系,当N等于1或2或3,至多到4,我们可以手写出所有的多粒子态的能量本征态以及各自的能量,然后将exp(-βE)求和求出配分函数。一旦涉及更多的粒子,就数学上很难求配分函数了。一般也不会出这种题目,一般都是求巨配分函数,如下
推导的逻辑见《Pathria》147~148
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mathscr{Q}(z, V, T)= \begin{cases}\prod_{\varepsilon} \frac{1}{\left(1-z \mathrm{e}^{-\beta \varepsilon}\right)}, & \text { 在 B. E. 情况, 且 } z \mathrm{e}^{-\beta \varepsilon}<1 \\ \prod_{\varepsilon}\left(1+z \mathrm{e}^{-\beta \varepsilon}\right), & \text { 在 F. D. 情况. }\end{cases}"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}q(z, V, T) & \equiv \frac{P V}{k T} \equiv \ln \mathscr{Q}(z, V, T) \\&=\mp \sum_{\varepsilon} \ln \left(1 \mp z \mathrm{e}^{-\beta \varepsilon}\right)\end{aligned}"><span></span><span></span></span>
两种分布的公式汇总
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mathscr{Q}(z, V, T)= \begin{cases}\prod_{\varepsilon} \frac{1}{\left(1-z \mathrm{e}^{-\beta \varepsilon}\right)}, & \text { 在 B. E. 情况, 且 } z \mathrm{e}^{-\beta \varepsilon}<1 \\ \prod_{\varepsilon}\left(1+z \mathrm{e}^{-\beta \varepsilon}\right), & \text { 在 F. D. 情况. }\end{cases}"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="q(z, V, T) \equiv \frac{P V}{k T}=\frac{1}{a} \sum \ln \left(1+a z \mathrm{e}^{-\beta \varepsilon}\right)"><span></span><span></span></span><br>
注意,<span class="equation-text" data-index="0" data-equation="\epsilon"><span></span><span></span></span>为单粒子态的某一本征能量,对它遍历则应取遍所有单粒子态的本征能量
<span class="equation-text" data-index="0" data-equation="a=0 for 可分辨粒子or经典极限"><span></span><span></span></span>;<br><span class="equation-text" data-index="1" data-equation="a=-1 \ for\ boson"><span></span><span></span></span><br><span class="equation-text" data-index="2" data-equation="a=1"><span></span><span></span></span> for fermion<br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}&\bar{N} \equiv z\left(\frac{\partial q}{\partial z}\right)_{V, T}=\sum_{\varepsilon} \frac{1}{z^{-1} \mathrm{e}^{\beta \varepsilon}+a} \\&\bar{E} \equiv-\left(\frac{\partial q}{\partial \beta}\right)_{z, V}=\sum_{\varepsilon} \frac{\varepsilon}{z^{-1} \mathrm{e}^{\beta \varepsilon}+a}\end{aligned}\\\begin{aligned}\left\langle n_{\varepsilon}\right\rangle &=\frac{1}{\mathscr{Q}}\left[-\frac{1}{\beta}\left(\frac{\partial \mathscr{Q}}{\partial \varepsilon}\right)_{z, T, \text { 所有其他的 } \varepsilon}\right] \\& \equiv-\frac{1}{\beta}\left(\frac{\partial q}{\partial \varepsilon}\right)_{z, T, \text { 所有其他的 } \varepsilon} \\&=\frac{1}{z^{-1} \mathrm{e}^{\beta \varepsilon}+a},\end{aligned}"><span></span><span></span></span>
讨论占据数的期望
出发点:这里讨论对前述的<span class="equation-text" data-index="0" data-equation="\left\langle n_{\varepsilon}\right\rangle=\frac{1}{\exp [(\varepsilon-\mu) / k T]+a}" contenteditable="false"><span class="katex"></span></span>的观察
<font color="#ffffff">对于玻色子,</font><span class="equation-text" data-index="0" data-equation="μ>\epsilon_0"><span></span><span></span></span><font color="#ffffff">是不可能发生的,只有可能小于,至多等于,等于的话意味着发生玻色爱因斯坦凝聚</font>
量子统计退化为经典统计的情况
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\exp \{(\varepsilon-\mu) / k T\} \gg 1"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left\langle n_{\varepsilon}\right\rangle \ll 1"><span></span><span></span></span>
占有数的统计涨落
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{\left\langle n_{\varepsilon}^2\right\rangle-\left\langle n_{\varepsilon}\right\rangle^2}{\left\langle n_{\varepsilon}\right\rangle^2}=\frac{1}{\left\langle n_{\varepsilon}\right\rangle}-a"><span></span><span></span></span>
对于经典情形(a= 0) ,相对涨落是正常值<br>对于费米-狄拉克情形,由<span class="equation-text" data-index="0" data-equation="\frac{1}{\left\langle n_{\varepsilon}\right\rangle}" contenteditable="false"><span></span><span></span></span>-1给出,它低于常值,并当仇<span class="equation-text" contenteditable="false" data-index="1" data-equation="\left\langle n_{\varepsilon}\right\rangle\rarr 1"><span></span><span></span></span> 时趋与零<br>对于玻色-爱因斯坦情形,很明显它是高于常值的.显然这个结果可应用于光子气,因而可应用于黑体辐射的谐振子态.对后一种情形,爱因斯坦根据普朗克的方法,早在1909 年就导出了这个结果,他甚至指出涨落表达式中的1 这项源自于辐射的波动性,而<font color="#ffffff"></font><span class="equation-text" data-index="2" data-equation="\frac{1}{\left\langle n_{\varepsilon}\right\rangle}" contenteditable="false"><span></span><span></span></span>项源自千光子的粒子性
占有数的期望值与“正好<font color="#ffffff">有</font><spa<font color="#ffffff">n<font color="#ffffff">个</font><font color="#ffffff">粒</font><font color="#ffffff">子</font><font color="#ffffff">属</font><font color="#ffffff">于</font><span class="equation-text" data-index="0" data-equation="\epsilon"><span></span><span></span></span><font color="#ffffff">能态的概率</font></spa<font>”之间的关系
玻色-爱因斯坦统计
费米-狄拉克统计
经典极限——
6.4 动力学的考虑
出发点:考虑体积很大,压强公式可以用积分代替
6.5 具有内部运动的分子构成的气体系统
出发点:在我们研究的大多数情况下,迄今为止我们仅仅考虑了分子运动的平<br>动部分虽然这方面的运动在气体系统中总是存在的,可是还有本质上和分<br>子内部运动有关的其他方面也需要考虑.很自然,在计算这样的系统的物理<br>性质时,由于这些运动所产生的贡献也应该考虑到.在计算时,我们将假设:<br>(i) 分子间的相互作用效应都是可以忽略的; (ii) 满足非简并性判据:<br>实际上,这使我们的系统成为一个玻尔兹曼理想气体系统.在大量的实际应用<br>中,这些假设是充分成立的<br>
分子的内部运动状态是由:(i) 电子态,(ii) 核子态,(iii) 振动态,和(iv) 转动态来确定的。<br>严格地说,这四种激发模式是彼此相互影响的,然而,<b><span class="equation-text" contenteditable="false" data-index="0" data-equation="在许多情况下,它们可以彼此独立地处理"><span></span><span></span></span></b>.
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}Q_N(V, T)=\frac{1}{N !}\left[Q_1\left(V_1 T\right)\right]^N \\Q_1(V, T)=\frac{V}{\lambda^3} j(T)\end{gathered}\\j(T)=\sum_i g_i \mathrm{e}^{-\varepsilon_i / k T}"><span></span><span></span></span><br>
因子j(T) 被看作是相应于内部运动的配分函数
展开讨论见<Pathria>P156起
6.6 化学平衡
出发点:建立化学平衡的思想:吉布斯自由能的变化为零:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\nu_A \mu_A+\nu_B \mu_B=\nu_X \mu_X+\nu_Y \mu_Y"><span></span><span></span></span>,所以我们只要把每一成分的化学势用其他热力学量表示出来,这里采用亥姆霍兹自由能。
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{[X]^{\nu_X}[Y]^{\nu_Y}}{[A]^{\nu_A}[B]^{\nu_B}}=K(T)=\exp \left(-\beta \Delta \mu^{(0)}\right)"><span></span><span></span></span><br>
第七章 理想玻色系统
出发点:这章是量子气体一般性理论的继续。相互作用仍然不考虑,但特殊的是,由不可分辨性所产生的量子统计效应越来越重要,即<span class="equation-text" contenteditable="false" data-index="0" data-equation="n\lambda^3 "><span></span><span></span></span>不再趋向于0.<br><br>细致研究简并体系,即不满足经典极限条件。在<span class="equation-text" data-index="1" data-equation="n\lambda^3 \rarr" contenteditable="false"><span></span><span></span></span>0 的极限情形下,所有的物理性质光滑地过渡到它们的经典对应.对于一个小的但又不可忽略的(<span class="equation-text" data-index="2" data-equation="n\lambda^3" contenteditable="false"><span></span><span></span></span>)的值来说,可以将有关系统的各种量展开成这个参数的幕级数.人们从这些展开式得到解析形式的第一个印象,就是系统的物理性质开始违背经典的行为特性.当<span class="equation-text" data-index="3" data-equation="(n\lambda^3" contenteditable="false"><span></span><span></span></span>)的数最级变为1 时,系统的行为变得与经典的行为大不相同且由一些典型的量子效应来表征
7.1 理想玻色气体的热力学性质<br>7.2 B.E.凝聚 (BEC)<br>
出发点:<span class="equation-text" data-index="0" data-equation="q(z, V, T) \equiv \frac{P V}{k T}=\frac{1}{a} \sum \ln \left(1+a z \mathrm{e}^{-\beta \varepsilon}\right)" contenteditable="false"><span></span><span></span></span>,再由态密度<span class="equation-text" contenteditable="false" data-index="1" data-equation="\boldsymbol{a}(\varepsilon) \mathrm{d} \varepsilon=\frac{\mathrm{d} \Sigma(\varepsilon)}{\mathrm{d} \varepsilon} \mathrm{d} \varepsilon \simeq \frac{V}{h^3} 2 \pi(2 m)^{3 / 2} \varepsilon^{1 / 2} \mathrm{~d} \varepsilon"><span></span><span></span></span>的积分代替求和式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}\frac{P}{k T}=-\frac{2 \pi}{h^3}(2 m)^{3 / 2} \int_0^{\infty} \varepsilon^{1 / 2} \ln \left(1-z \mathrm{e}^{-\beta \varepsilon}\right) \mathrm{d} \varepsilon-\frac{1}{V} \ln (1-z) \\\frac{N}{V}=\frac{2 \pi}{h^3}(2 m)^{3 / 2} \int_0^{\infty} \frac{\varepsilon^{1 / 2} \mathrm{~d} \varepsilon}{z^{-1} \mathrm{e}^{\beta \varepsilon}-1}+\frac{1}{V} \frac{z}{1-z}\end{gathered}"><span></span><span></span></span>
a=0 for 可分辨粒子or经典极限;<br>a=-1 for boson<br>a=1 for fermion<br>
用玻色爱因斯坦函数表示的一般性结果
做替换<span class="equation-text" contenteditable="false" data-index="0" data-equation="\beta \varepsilon=p^2 /(2 m k T)=x"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\begin{aligned}\frac{P}{k T} &=-\frac{2 \pi(2 m k T)^{3 / 2}}{h^3} \int_0^{\infty} x^{1 / 2} \ln \left(1-z \mathrm{e}^{-x}\right) \mathrm{d}x=\frac{1}{\lambda^3} g_{5 / 2}(z), \\\frac{N-N_0}{V} &=\frac{2 \pi(2 m k T)^{3 / 2}}{h^3} \int_0^{\infty} \frac{x^{1 / 2} \mathrm{~d} x}{z^{-1} \mathrm{e}^x-1}=\frac{1}{\lambda^3} g_{3 / 2}(z),\end{aligned}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\lambda = \frac{h}{(2\pi mkT)^{1/2}}"><span></span><span></span></span><br>
注意,第一个式子是丢掉了后面一项的,因为它总是可以忽略
玻色-爱因斯坦函数:<span class="equation-text" contenteditable="false" data-index="0" data-equation="g_\nu(z)=\frac{1}{\Gamma(\nu)} \int_0^{\infty} \frac{x^{\nu-1} \mathrm{~d} x}{z^{-1} \mathrm{e}^x-1}=z+\frac{z^2}{2^\nu}+\frac{z^3}{3^\nu}+\cdots"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{z}\left(\frac{\partial z}{\partial T}\right)_v=-\frac{3}{2 T} \frac{g_{3 / 2}(z)}{g_{1 / 2}(z)}"><span></span><span></span></span><br><br><span class="equation-text" data-index="1" data-equation="\frac{1}{z}\left(\frac{\partial z}{\partial T}\right)_p=-\frac{5 g_{\frac{5}{2}}(z)}{2 T g_{\frac{3}{2}}(z)}" contenteditable="false"><span></span><span></span></span>
系统内能
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}U & \equiv-\left(\frac{\partial}{\partial \beta} \ln \mathscr{\Xi}\right)_{z, V}=k T^2\left\{\frac{\partial}{\partial T}\left(\frac{P V}{k T}\right)\right\}_{z, V} \\& =k T^2 V g_{5 / 2}(z)\left\{\frac{\mathrm{d}}{\mathrm{d} T}\left(\frac{1}{\lambda^3}\right)\right\}=\frac{3}{2} k T \frac{V}{\lambda^3} g_{5 / 2}(z)\end{aligned}"><span></span><span></span></span>
可验证:<span class="equation-text" contenteditable="false" data-index="0" data-equation="P=\frac{2}{3}(U / V)"><span></span><span></span></span>
情况一:<font color="#ffffff">对于</font>温度不太低,z不接近1,即玻色爱因斯坦凝聚不太显著的情况
注:
<span class="equation-text" contenteditable="false" data-index="0" data-equation="z \equiv \mathrm{e}^{-\alpha}=\mathrm{e}^{\mu / k T}"><span></span><span></span></span>
物态方程
<font color="#ffffff"><span class="equation-text" contenteditable="false" data-index="0" data-equation="N_0"><span></span><span></span></span>可以略去</font>
级数展开式来取逆,得<font color="#ffeb3b"><b>到:</b><span class="equation-text" data-index="0" data-equation="\frac{P V}{N k T}=\sum_{l=1}^{\infty} a_l\left(\frac{\lambda^3}{v}\right)^{l-1}" contenteditable="false"><span></span><span></span></span></font>
其中:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="v\equiv \frac{V}{N} \equiv1 / n"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="\begin{aligned}& a_1=1 \\& a_2=-\frac{1}{4 \sqrt{2}}=-0.17678 \\& a_3=-\left(\frac{2}{9 \sqrt{3}}-\frac{1}{8}\right)=-0.00330 \\& a_4=-\left(\frac{3}{32}+\frac{5}{32 \sqrt{2}}-\frac{1}{2 \sqrt{6}}\right)=-0.00011\end{aligned}" contenteditable="false"><span></span><span></span></span>
比热
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\frac{C_V}{N k} & \equiv \frac{1}{N k}\left(\frac{\partial U}{\partial T}\right)_{N, V}=\frac{3}{2}\left\{\frac{\partial}{\partial T}\left(\frac{P V}{N k}\right)\right\}_v \\& =\frac{3}{2} \sum_{l=1}^{\infty} \frac{5-3 l}{2} a_l\left(\frac{\lambda^3}{v}\right)^{l-1} \\& =\frac{3}{2}\left[1+0.0884\left(\frac{\lambda^3}{v}\right)+0.0066\left(\frac{\lambda^3}{v}\right)^2+0.0004\left(\frac{\lambda^3}{v}\right)^3+\cdots\right]\end{aligned}"><span></span><span></span></span>
情况二:温度进一步降低,z接近1的情况(<span class="equation-text" contenteditable="false" data-index="0" data-equation="n\lambda^3>2.612"><span></span><span></span></span>)
黎曼<span class="equation-text" contenteditable="false" data-index="0" data-equation="{\Zeta}"><span></span><span></span></span>函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="g_\nu(1)=\sum_{l=1}^{\infty} \frac{1}{l^\nu}=\zeta(\nu)"><span></span><span></span></span>
粒子数
激发态粒子数<span class="equation-text" contenteditable="false" data-index="0" data-equation="N_{\mathrm{e}}=V \frac{(2 \pi m k T)^{3 / 2}}{h^3} g_{3 / 2}(z)"><span></span><span></span></span>
最大值:<span class="equation-text" data-index="0" data-equation="g_{3 / 2}(1)=1+\frac{1}{2^{3 / 2}}+\frac{1}{3^{3 / 2}}+\cdots \equiv \zeta\left(\frac{3}{2}\right) \simeq 2.612" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="N_{\mathrm{e}} \leqslant V \frac{(2 \pi m k T)^{3 / 2}}{h^3} \zeta\left(\frac{3}{2}\right)"><span></span><span></span></span><br>
z和<span class="equation-text" contenteditable="false" data-index="0" data-equation="N_e"><span></span><span></span></span>的逻辑
只要在系统中粒子的实际数目比这个极限值小,则一切都蛮好;实际上,<br>系统中所有的粒子都分布在激发态上,而当 <span class="equation-text" contenteditable="false" data-index="0" data-equation="N_e\approx N "><span></span><span></span></span>时, <font color="#ff0000"><b>z的精确值由该公式 <br>所确定</b></font>。<br>另一方面,倘若粒子的实际数目超过了这个极限值,则Z=1,则很自然其激发<br>态接受它们所能容纳的那么多粒子,而其余粒子将全部地被推到基态 E=0 上<br>去(在该情况下,它的容量实质上是无限的)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="N_0=N-\left\{V \frac{(2 \pi m k T)^{3 / 2}}{h^3} \zeta\left(\frac{3}{2}\right)\right\}\\z=\frac{N_0}{N_0+1} \simeq 1-\frac{1}{N_0} "><span></span><span></span></span><br>
玻色-爱因斯坦凝聚条件
<span class="equation-text" contenteditable="false" data-index="0" data-equation="N>V \frac{(2 \pi m k T)^{3 / 2}}{h^3} \zeta\left(\frac{3}{2}\right)\\或T<T_{\mathrm{c}}=\frac{h^2}{2 \pi m k}\left\{\frac{N}{V \zeta(3 / 2)}\right\}^{2 / 3}"><span></span><span></span></span><br>
此处的N为总的粒子数
凝聚<span class="equation-text" contenteditable="false" data-index="0" data-equation="N_0"><span></span><span></span></span>用温度T表示:
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{N_0}{N}=1-\left(\frac{T}{T_{\mathrm{c}}}\right)^{3 / 2} \approx \frac{3}{2} \frac{T_{\mathrm{c}}-T}{T_{\mathrm{c}}}"><span></span><span></span></span>
逸度z随温度T的变化
<span class="equation-text" contenteditable="false" data-index="0" data-equation="N_{\mathrm{e}}=V \frac{(2 \pi m k T)^{3 / 2}}{h^3} g_{3 / 2}(z)"><span></span><span></span></span>
热力学
等体过程<br>v不变(即单个粒子所占的体积不变,等价于粒子数不变),P与T的关系
B-E凝聚发生时<font color="#ffffff">(T<Tc)</font>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(T)=\frac{k T}{\lambda^3} \zeta\left(\frac{5}{2}\right)"><span></span><span></span></span>
若在B-E凝聚点
<span class="equation-text" data-index="0" data-equation="P\left(T_{\mathrm{c}}\right)=\frac{\zeta(5 / 2)}{\zeta(3 / 2)}\left(\frac{N}{V} k T_{\mathrm{c}}\right) \simeq 0.5134\left(\frac{N}{V} k T_{\mathrm{c}}\right)" contenteditable="false"><span></span><span></span></span><br><font color="#ff0000">注意在凝聚点处,理想玻色气体的压强约为玻尔兹曼气体的一半</font>
B-E不发生时(T>Tc)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}P(T)=\frac{N}{V} k T \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)} \\g_{3 / 2}(z)=\frac{\lambda^3}{v}=\frac{N}{V} \frac{h^3}{(2 \pi m k T)^{3 / 2}}\end{gathered}"><span></span><span></span></span>
内能与热容
B-E凝聚发生时<font color="#ffffff">(T<Tc)</font>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{C_V}{N k}=\frac{3}{2} \frac{V}{N} \zeta\left(\frac{5}{2}\right) \frac{\mathrm{d}}{\mathrm{d} T}\left(\frac{T}{\lambda^3}\right)=\frac{15}{4} \zeta\left(\frac{5}{2}\right) \frac{v}{\lambda^3}"><span></span><span></span></span>
若在B-E凝聚点
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{C_V\left(T_{\mathrm{c}}\right)}{N k}=\frac{15}{4} \frac{\zeta\left(\frac{5}{2}\right)}{\zeta\left(\frac{3}{2}\right)} \simeq 1.925"><span></span><span></span></span><br>
B-E不发生时(T>Tc)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{C_V}{N k}=\frac{15}{4} \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}-\frac{9}{4} \frac{g_{3 / 2}(z)}{g_{1 / 2}(z)}"><span></span><span></span></span>
子主题
只有T远大于凝聚温度,才有γ等于5/3,;否则都大于5/3
等温过程
临界体积
<span class="equation-text" contenteditable="false" data-index="0" data-equation="v_{\mathrm{c}}=\frac{\lambda^3}{\zeta\left(\frac{3}{2}\right)}"><span></span><span></span></span>
B-E凝聚发生时<font color="#ffffff">(<span class="equation-text" contenteditable="false" data-index="0" data-equation="v<v_c"><span></span><span></span></span>)</font>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_0=\frac{k T}{\lambda^3} \zeta\left(\frac{5}{2}\right)"><span></span><span></span></span>
压强与体积无关
绝热过程
熵
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{S}{N k} \equiv \frac{U+P V}{N k T}-\frac{\mu}{k T}= \begin{cases}\frac{5}{2} \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}-\ln z, & \text { 当 } T \geqslant T_{\mathrm{c}} \\ \frac{5}{2} \frac{v}{\lambda^3} \zeta\left(\frac{5}{2}\right), & \text { 当 } T \leqslant T_{\mathrm{c}}\end{cases}"><span></span><span></span></span>
这里的S是用吉布斯自由能推出来的,注意当N会起作用时,需要μ不等于0,所以N总是等于激发态的粒子
<span class="equation-text" contenteditable="false" data-index="0" data-equation="S=N_{\mathrm{e}} \cdot \frac{5}{2} k \frac{\zeta\left(\frac{5}{2}\right)}{\zeta\left(\frac{3}{2}\right)} \propto N_{\mathrm{e}}"><span></span><span></span></span>
凝聚的粒子不对熵有贡献
所谓绝热过程就是等熵过程
绝热过程
<span class="equation-text" contenteditable="false" data-index="0" data-equation="v T^{3 / 2}= 常数,\\\frac{P}{T^{5 / 2}}= 常数,\\P v^{5 / 3}= 常数,"><span></span><span></span></span>
7.3 光子气体or黑体辐射的热力学
出发点:这个系统从两个实际上相同但概念上不同的观点来考虑<br>(1) 普朗克的离散谐振子模型:把系统看成是具有量子能量<span class="equation-text" data-index="0" data-equation="(n_s + 1/2)\hbar \omega_s" contenteditable="false"><span></span><span></span></span>的可分辨<font color="#ff0000">谐振子</font>集合,其中<span class="equation-text" data-index="1" data-equation="n_s =0,1,2, ...," contenteditable="false"><span></span><span></span></span>而<span class="equation-text" data-index="2" data-equation="\omega_s" contenteditable="false"><span></span><span></span></span> 是振子的(角)频率;<br>(2) 爱因斯坦的光子气体模型:把系统看成是<font color="#ff0000">全同不可分辨的量子</font>——所谓光子构成的气体,光子的能量为<span class="equation-text" data-index="3" data-equation="\hbar \omega_s" contenteditable="false"><span></span><span></span></span>, <span class="equation-text" data-index="4" data-equation="\omega_s" contenteditable="false"><span></span><span></span></span> 为相应于辐射模式的(角)频率.
普朗克的谐振子观点
出发点:考虑到由于频率不同的振子彼此之间可分辨,它们组成的系统遵循麦克斯韦-玻尔兹曼统计法;
根据之前经典的离散谐振子计算结果,见3.8,单个普朗克振子的能量期望值为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left\langle\varepsilon_s\right\rangle=\frac{\hbar \omega_s}{\exp \left(\hbar \omega_s / k T\right)-1}"><span></span><span></span></span>
单位空腔体积内在频率区间<span class="equation-text" contenteditable="false" data-index="0" data-equation="(\omega, \omega+\mathrm{d} \omega)"><span></span><span></span></span>的简正振动方式数有瑞利表达式给出
<span class="equation-text" contenteditable="false" data-index="0" data-equation="dN(\omega)=2 \cdot 4 \pi\left(\frac{1}{\lambda}\right)^2 \mathrm{~d}\left(\frac{1}{\lambda}\right)=\frac{\omega^2 \mathrm{~d} \omega}{\pi^2 c^3}"><span></span><span></span></span><br>
于是总的内量密度为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="u(\omega) \mathrm{d} \omega=\frac{\hbar}{\pi^2 c^3} \frac{\omega^3 \mathrm{~d} \omega}{\mathrm{e}^{\hbar_\omega / k T}-1}"><span></span><span></span></span>
爱因斯坦的光子观点
直接关注由<span class="equation-text" data-index="0" data-equation="n_s" contenteditable="false"><span></span><span></span></span>个光子占有能级<span class="equation-text" contenteditable="false" data-index="1" data-equation="\epsilon_s"><span></span><span></span></span>的概率,即占有数的玻色统计
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\left\langle n_s\right\rangle & =\frac{\sum_{n_s=0}^{\infty} n_s \exp \left(-n_s \hbar \omega_s / k T\right)}{\sum_{n_s=0}^{\infty} \exp \left(-n_s \hbar \omega_s / k T\right)} \\& =\frac{1}{\exp \left(\hbar \omega_s / k T\right)-1},\end{aligned}"><span></span><span></span></span>
推导中注意光子气体的化学势是多少?
0;<br>因为光子气体粒子数不守恒,只应该引入一个拉格朗日乘子,所以α等于零,<br>所以μ等于0
考虑能量处于 <span class="equation-text" contenteditable="false" data-index="0" data-equation="\hbar \omega / c \text { 和 } \hbar(\omega+\mathrm{d} \omega) / c"><span></span><span></span></span> 之间的光子态数,
<span class="equation-text" contenteditable="false" data-index="0" data-equation="g(\omega) \mathrm{d} \omega \simeq 2 \cdot \frac{V}{h^3}\left\{4 \pi\left(\frac{\hbar \omega}{c}\right)^2\left(\frac{\hbar \mathrm{d} \omega}{c}\right)\right\}=\frac{V \omega^2 \mathrm{~d} \omega}{\pi^2 c^3}"><span></span><span></span></span>
长波极限和短波极限
黑体辐射谱
瑞利金斯公式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="u^{\prime}(x) \simeq x^2"><span></span><span></span></span>
维恩公式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="u^{\prime}(x) \simeq x^3 \mathrm{e}^{-x}"><span></span><span></span></span>
一些热力学结论
总能量密度
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{U}{V}=\int_0^{\infty} u(x) \mathrm{d} x=\frac{(k T)^4}{\pi^2 \hbar^3 c^3} \int_0^{\infty} \frac{x^3 \mathrm{~d} x}{\mathrm{e}^x-1}=\frac{\pi^2 k^4}{15 \hbar^3 c^3} T^4"><span></span><span></span></span>
总辐射密度:斯特潘玻尔兹曼定律
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{4} \frac{U}{V} c=\frac{\pi^2 k^4}{60 \hbar^3 c^2} T^4=\sigma T^4\\式中,\sigma=\frac{\pi^2 k^4}{60 \hbar^3 c^2}=5.670 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}"><span></span><span></span></span><br>
注:光压等于辐射能量密度除以光速<span class="equation-text" contenteditable="false" data-index="0" data-equation="p=\frac{I}{\Delta S \Delta t}=\frac{P}{c}"><span></span><span></span></span>
配分函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\ln \mathscr{Q}(V, T) \equiv \frac{P V}{k T}=-\sum_{\varepsilon} \ln \left(1-\mathrm{e}^{-\varepsilon / k T}\right)\\利用极端相对论性公式:a(\varepsilon) \mathrm{d} \varepsilon=2 V \frac{4 \pi p^2 \mathrm{~d} p}{h^3}=\frac{8 \pi V}{h^3 c^3} \varepsilon^2 \mathrm{~d} \varepsilon,\\\ln \mathscr{Q}(V, T) \equiv \frac{P V}{k T}=\frac{8 \pi V}{3 h^3 c^3} \frac{1}{k T} \int_0^{\infty} \frac{\varepsilon^3 \mathrm{~d} \varepsilon}{\mathrm{e}^{\varepsilon / k T}-1} "><span></span><span></span></span><br>
U(P,V)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}P V & =\frac{8 \pi V}{3 h^3 c^3}(k T)^4 \int_0^{\infty} \frac{x^3 \mathrm{~d} x}{\mathrm{e}^x-1} \\& =\frac{8 \pi^5 V}{45 h^3 c^3}(k T)^4=\frac{1}{3} U .\end{aligned}"><span></span><span></span></span><br>
<span class="equation-text" data-index="0" data-equation="\begin{gathered}A=G-P V=-P V=-\frac{1}{3} U \\S \equiv \frac{U-A}{T}=\frac{4}{3} \frac{U}{T} \propto V T^3, \\C_V=T\left(\frac{\partial S}{\partial T}\right)_V=3 S .\end{gathered}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="V T^3=\text { 常数. }"><span></span><span></span></span><br>
绝热变化
<span class="equation-text" contenteditable="false" data-index="0" data-equation="V T^3=\text { 常数. }\\P V^{4 / 3}=\text { 常数. }"><span></span><span></span></span>
最后注意到光子数的平均值<br>以及涨落为无穷大
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\bar{N} & =\frac{V}{\pi^2 c^3} \int_0^{\infty} \frac{\omega^2 \mathrm{~d} \omega}{\mathrm{e}^{\hbar \omega / k T}-1} \\& =V \frac{2 \zeta(3)(k T)^3}{\pi^2 \hbar^3 c^3} \propto V T^3\end{aligned}"><span></span><span></span></span>
7.4 声波场or 固体比热<br>(没讲)
固体热容的爱因斯坦模型
假定有N个原子的固体可视为3N个能级相同的一维谐振子,每个谐振子能级简并度为1.<br>解释了热容在0K左右为0,在高温下热容为常数,与能均分定理一致。
即爱因斯坦的粗暴全同声学声子近似
<font color="#ffffff">第八章 理想费米系统</font>
8.1 理想费米气体的热力学性质
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\frac{P}{k T} &=\frac{g}{\lambda^3} f_{5 / 2}(z), \\\frac{N}{V} &=\frac{g}{\lambda^3} f_{3 / 2}(z),\end{aligned}"><span></span><span></span></span>
g为粒子的内部结构引起的权重因子,例如自旋1/2,则g=2
费米-狄拉克函数:<span class="equation-text" contenteditable="false" data-index="0" data-equation="f_\nu(z)=\frac{1}{\Gamma(\nu)} \int_0^{\infty} \frac{x^{\nu-1} \mathrm{~d} x}{z^{-1} \mathrm{e}^x+1}=z-\frac{z^2}{2^\nu}+\frac{z^3}{3^\nu}-\cdots"><span></span><span></span></span>
递推公式<span class="equation-text" contenteditable="false" data-index="0" data-equation="z \frac{\partial}{\partial z}\left[f_\nu(z)\right] \equiv \frac{\partial}{\partial(\ln z)} f_\nu(z)=f_{\nu-1}(z)"><span></span><span></span></span>
系统的热力学性质通式
出发点:这里的笔记是普适的热力学性质表达式,但都是用费米-狄拉克函数表示,很不显然
系统内能
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}U & \equiv-\left(\frac{\partial}{\partial \beta} \ln \mathscr{Q}\right)_{z, V}=k T^2\left(\frac{\partial}{\partial T} \ln \mathscr{Q}\right)_{z, V} \\& =\frac{3}{2} k T \frac{g V}{\lambda^3} f_{5 / 2}(z)=\frac{3}{2} N k T \frac{f_{5 / 2}(z)}{f_{3 / 2}(z)}\end{aligned}"><span></span><span></span></span>
可验证:<span class="equation-text" contenteditable="false" data-index="0" data-equation="P=\frac{2}{3}(U / V)"><span></span><span></span></span>
热容
一个中间公式,<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{z}\left(\frac{\partial z}{\partial T}\right)_v=-\frac{3}{2 T} \frac{f_{3 / 2}(z)}{f_{1 / 2}(z)}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{C_V}{N k}=\frac{15}{4} \frac{f_{5 / 2}(z)}{f_{3 / 2}(z)}-\frac{9}{4} \frac{f_{3 / 2}(z)}{f_{1 / 2}(z)}"><span></span><span></span></span>
自由能和熵
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{r}A \equiv N \mu-P V=N k T\left\{\ln z-\frac{f_{5 / 2}(z)}{f_{3 / 2}(z)}\right\} \\S \equiv \frac{U-A}{T}=N k\left\{\frac{5}{2} \frac{f_{5 / 2}(z)}{f_{3 / 2}(z)}-\ln z\right\} .\end{array}"><span></span><span></span></span>
分情况讨论各种情况
出发点:这里的开始对费米-狄拉克函数做近似
①经典极限(非简并情况)
倘若气休的密度很低而其温度很高,则此种情形可能对应于<span class="equation-text" contenteditable="false" data-index="0" data-equation="f_{3 / 2}(z) \frac{n \lambda^3}{g}=\frac{n h^3}{g(2 \pi m k T)^{3 / 2}} \ll 1"><span></span><span></span></span>,称为非简并情况
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}P=\frac{N k T}{V} ; \quad U=\frac{3}{2} N k T ; \quad C_V=\frac{3}{2} N k \\A=N k T\left\{\ln \frac{\left(n \lambda^3\right)}{g}-1\right\} \\S=N k\left\{\frac{5}{2}-\ln \frac{\left(n \lambda^3\right)}{g}\right\} ;\end{gathered}"><span></span><span></span></span>
②一般情况(弱简并情况)
温度适中
采用位力展开式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{P V}{N k T}=\sum_{l=1}^{\infty}(-1)^{l-1} a_l\left(\frac{\lambda^3}{g v}\right)^{l-1}"><span></span><span></span></span>
其中:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="v\equiv \frac{V}{N} \equiv1 / n"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="\begin{aligned}& a_1=1 \\& a_2=-\frac{1}{4 \sqrt{2}}=-0.17678 \\& a_3=-\left(\frac{2}{9 \sqrt{3}}-\frac{1}{8}\right)=-0.00330 \\& a_4=-\left(\frac{3}{32}+\frac{5}{32 \sqrt{2}}-\frac{1}{2 \sqrt{6}}\right)=-0.00011\end{aligned}" contenteditable="false"><span></span><span></span></span>
热容
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}C_V & =\frac{3}{2} N k \sum_{l=1}^{\infty}(-1)^{l-1} \frac{5-3 l}{2} a_l\left(\frac{\lambda^3}{g v}\right)^{l-1} \\& =\frac{3}{2} N k\left[1-0.0884\left(\frac{\lambda^3}{g v}\right)+0.0066\left(\frac{\lambda^3}{g v}\right)^2-0.0004\left(\frac{\lambda^3}{g v}\right)^3+\cdots\right]\end{aligned}"><span></span><span></span></span>
③低温极限(0K,完全简并状态)
此时T趋近于0
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left\langle n_{\varepsilon}\right\rangle \equiv \frac{1}{\mathrm{e}^{(\varepsilon-\mu) / k T}+1}= \begin{cases}1, & \text { 当 } \varepsilon<\mu_0, \\ 0, & \text { 当 } \varepsilon>\mu_0 .\end{cases}"><span></span><span></span></span>
定义费米概念群
费米能量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_0^{\varepsilon_F} a(\varepsilon) \mathrm{d} \varepsilon=N"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\varepsilon_F=\left(\frac{3 N}{4 \pi g V}\right)^{2 / 3} \frac{h^2}{2 m}=\left(\frac{6 \pi^2 n}{g}\right)^{2 / 3} \frac{\hbar^2}{2 m}"><span></span><span></span></span>
费米动量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}N=\frac{4 \pi g V}{3 h^3} p_F^3 \\p_F=\left(\frac{3 N}{4 \pi g V}\right)^{1 / 3} h .\end{gathered}"><span></span><span></span></span><br>
基态能or零点能
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}E_0 & =\frac{4 \pi g V}{h^3} \int_0^{p_F}\left(\frac{p^2}{2 m}\right) p^2 \mathrm{~d} p \\& =\frac{2 \pi g V}{5 m h^3} p_F^5,\end{aligned}"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{E_0}{N}=\frac{3 p_F^2}{10 m}=\frac{3}{5} \varepsilon_F"><span></span><span></span></span>
基态压强
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_0=\frac{2}{3}\left(E_0 / V\right)=\frac{2}{5} n \varepsilon_F .\\P_0=\left(\frac{6 \pi^2}{g}\right)^{2 / 3} \frac{\hbar^2}{5 m} n^{5 / 3} \propto n^{5 / 3}"><span></span><span></span></span><br>
④低温(强简并状态)
出发点:注意到此时T很小,<span class="equation-text" data-index="0" data-equation="\epsilon-\mu" contenteditable="false"><span></span><span></span></span>稍稍大一点点,就会让这个指数因子绝对值非常大,那么整个指数项就会与无穷时所差无几。也就是说粒子热分布方面,低温与绝对零温的区别仅仅发生在<span class="equation-text" contenteditable="false" data-index="1" data-equation="\epsilon-\mu=0"><span></span><span></span></span>附近。<br>所以可以在完全简并状态的基础上进行讨论,<br>
物理直觉
推导分析
化学势
从粒子数出发:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{N}{V}=\frac{4 \pi g}{3}\left(\frac{2 m}{h^2}\right)^{3 / 2}(k T \ln z)^{3 / 2}\left[1+\frac{\pi^2}{8}(\ln z)^{-2}+\cdots\right]\\k T \ln z \equiv \mu \simeq\left(\frac{3 N}{4 \pi g V}\right)^{2 / 3} \frac{h^2}{2 m}=\varepsilon_F,(零阶近似)\\k T \ln z \equiv \mu \simeq \varepsilon_F\left[1-\frac{\pi^2}{12}\left(\frac{k T}{\varepsilon_F}\right)^2\right](一阶近似)"><span></span><span></span></span><br>
内能
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{U}{N}=\frac{3}{5} \varepsilon_F\left[1+\frac{5 \pi^2}{12}\left(\frac{k T}{\varepsilon_F}\right)^2+\cdots\right]"><span></span><span></span></span>
压强
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P=\frac{2}{3} \frac{U}{V}=\frac{2}{5} n \varepsilon_F\left[1+\frac{5 \pi^2}{12}\left(\frac{k T}{\varepsilon_F}\right)^2+\cdots\right]"><span></span><span></span></span>
比热
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{C_V}{N k}=\frac{\pi^2}{2} \frac{k T}{\varepsilon_F}+\cdots"><span></span><span></span></span>
整个温度变化范围的比热(注意费米温度远远大于玻色爱因斯坦凝聚温度)
自由能和熵
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\frac{A}{N} & =\mu-\frac{P V}{N} \\& =\frac{3}{5} \varepsilon_F\left[1-\frac{5 \pi^2}{12}\left(\frac{k T}{\varepsilon_F}\right)^2+\cdots\right],\end{aligned}\\\frac{S}{N k}=\frac{\pi^2}{2} \frac{k T}{\varepsilon_F}+\cdots"><span></span><span></span></span><br>
8.2 顺磁性的费米统计解释
出发点:我们现在把注意力转到研究在有外磁场B 存在时一个无相互作用的费米气体的平衡状态.这里首要的问题在于,确定该气体获得的总磁矩M (作为B 和T 的函数),然后计算出磁化率<br>第3.9 节中所给出的处理按照玻尔兹曼的处理我们得到(正的)磁化率<span class="equation-text" data-index="0" data-equation="\chi(T)" contenteditable="false"><span></span><span></span></span> ,它(<b><font color="#ff0000">郎之万顺磁性</font></b>)在高温下服从居里定律:<span class="equation-text" data-index="1" data-equation=" \chi(T)\propto T^{-1}" contenteditable="false"><span></span><span></span></span> ;在低温下,我们得到磁饱和状态.<br>这里将按照费米统计法来处理该问题,将在低温下得到不同的结果——,由于费米气体甚至在绝对零度下也是相当活跃的,所以从来得不到磁饱和的结果.<b><font color="#ff0000">然而我们得到一个与温度无关,但强烈地依赖于该气体密度的极限磁化率</font><span class="equation-text" data-index="2" data-equation="\chi_0" contenteditable="false"><font color="#ff0000"></font></span></b><font color="#ff0000"><b>。(泡利顺磁性)</b></font><br>
研究简化模型
模型描述
<span class="equation-text" contenteditable="false" data-index="0" data-equation="(i) 一群粒子的 \boldsymbol{\mu}^* 平行于 \boldsymbol{B}, \varepsilon=P^2 / 2 m-\mu^* B,\\(ii) 另一群粒子的 \boldsymbol{\mu}^* 反平行于 \boldsymbol{B}, \varepsilon=P^2 / 2 m+\mu^* B"><span></span><span></span></span>
绝对零度时
在绝对零度时,能级的填充方式为自下而上,对于两群粒子而言,最终都是填充到相同的能量高度,但它们的能量起点不同,就导致:<br> 在第一群中粒子的动能将处在0 和<span class="equation-text" data-index="0" data-equation="\epsilon_F+\mu^* B" contenteditable="false"><span></span><span></span></span>之间,而第二群中粒子的动能将处在0 和<span class="equation-text" contenteditable="false" data-index="1" data-equation="\epsilon_F-\mu^* B"><span></span><span></span></span> 之间<br>
于是两群粒子的能级数为:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}& N^{+}=\frac{4 \pi V}{3 h^3}\left\{2 m\left(\varepsilon_F+\mu^* B\right)\right\}^{3 / 2} \\& N^{-}=\frac{4 \pi V}{3 h^3}\left\{2 m\left(\varepsilon_F-\mu^* B\right)\right\}^{3 / 2}\end{aligned}"><span></span><span></span></span>
净磁矩为:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}M & =\mu^*\left(N^{+}-N^{-}\right) \\& =\frac{4 \pi \mu^* V(2 m)^{3 / 2}}{3 h^3}\left\{\left(\varepsilon_F+\mu^* B\right)^{3 / 2}-\left(\varepsilon_F-\mu^* B\right)^{3 / 2}\right\} .\end{aligned}"><span></span><span></span></span>
弱场磁化率为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\chi_0=\lim _{B \rightarrow 0}\left(\frac{M}{V B}\right)=\frac{4 \pi \mu^{* 2}(2 m)^{3 / 2} \varepsilon_F^{1 / 2}}{h^3}\\取 g=2, 上述结果可与写成:\\\chi_0=\frac{3}{2} n \mu^{* 2} / \varepsilon_F ."><span></span><span></span></span><br>
与郎之万顺磁性相比较,这里的绝对零度下的磁化率就小多了,而且并没有在低温下就饱和
非零温时
新的处理方式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}E_n & =\sum_{\boldsymbol{p}}\left[\left(\frac{p^2}{2 m}-\mu^* B\right) n_{\boldsymbol{p}}^{+}+\left(\frac{p^2}{2 m}+\mu^* B\right) n_{\boldsymbol{p}}^{-}\right] \\& =\sum_{\boldsymbol{p}}\left(n_{\boldsymbol{p}}^{+}+n_{\boldsymbol{p}}^{-}\right) \frac{p^2}{2 m}-\mu^* B\left(N^{+}-N^{-}\right),\end{aligned}"><span></span><span></span></span><br>
<span class="equation-text" data-index="0" data-equation="Q(N)=\sum_{\left\{n_p^{+}\right\},\left\{n_{\bar{p}}^{-}\right\}}^{\prime} \exp \left(-\beta E_n\right)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="n_{\boldsymbol{p}}^{+}, n_{\boldsymbol{p}}^{-}=0 或 1\\\sum_p n_p^{+}+\sum_p n_p^{-}=N^{+}+N^{-}=N"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}Q(N)=\sum_{N^{+}=0}^N\left[\exp \left[\beta \mu^* B\left(2 N^{+}-N\right)\right] \times\right. \\\left.\left\{\sum_{\left\{n_{\boldsymbol{p}}^{+}\right\}}^{\prime \prime} \exp \left(-\beta \sum_{\boldsymbol{p}} \frac{p^2}{2 m} n_{\boldsymbol{p}}^{+}\right) \sum_{\left\{n_{\boldsymbol{p}}^{-}\right\}}^{\prime \prime \prime} \exp \left(-\beta \sum_{\boldsymbol{p}} \frac{p^2}{2 m} n_{\boldsymbol{p}}^{-}\right)\right\}\right]\end{gathered}\\\Sigma^{\prime \prime}服从约束条件: \sum_p n_p^{+}=N^{+}; 而 \Sigma^{\prime \prime \prime}服从约束条件:\\\sum_p n_p^{-}=N^{-}=N-N^{+} ."><span></span><span></span></span><br>
继续计算:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="Q(N)=\exp \left[-\beta \mu^* B N\right] \sum_{N^{+}=0}^N\left\{\exp \left[2 \beta \mu^* B N^{+}\right] Q_0\left(N^{+}\right) Q_0\left(N-N^{+}\right)\right\}\\\begin{aligned}\frac{1}{N} \ln Q(N)= & -\beta \mu^* B+\frac{1}{N} \ln \sum_{N^{+}=0}^N\left[\operatorname { e x p } \left\{2 \beta \mu^* B N^{+}-\beta A_0\left(N^{+}\right)-\right.\right. \\& \left.\left.\beta A_0\left(N-N^{+}\right)\right\}\right] .\end{aligned}"><span></span><span></span></span><br>
对于总和<span class="equation-text" data-index="0" data-equation="\sum_{N^+}" contenteditable="false"><span></span><span></span></span>的对数,可以用总和式中最大项的对数来代替.这样做可能产生的误差同保留的项比较起来是可<br>以忽略不计的,<span class="equation-text" contenteditable="false" data-index="1" data-equation="\overline{N^{+}}"><span></span><span></span></span>即最大项<br><span class="equation-text" data-index="2" data-equation="\mu_0\left(\overline{N^{+}}\right)-\mu_0\left(N-\overline{N^{+}}\right)=2 \mu^* B" contenteditable="false"><span></span><span></span></span><br>
引入无量纲数r:<span class="equation-text" data-index="0" data-equation="M=\mu^*\left(\overline{N^{+}}-\overline{N^{-}}\right)=\mu^*\left(2 \overline{N^{+}}-N\right)=\mu^* N r \quad(0 \leqslant r \leqslant 1)" contenteditable="false"><span></span><span></span></span><br>于是:<span class="equation-text" contenteditable="false" data-index="1" data-equation="\mu_0\left(\frac{1+r}{2} N\right)-\mu_0\left(\frac{1-r}{2} N\right)=2 \mu^* B"><span></span><span></span></span>
泰勒展开:<span class="equation-text" data-index="0" data-equation="r \simeq \frac{2 \mu^* B}{\left.\frac{\partial \mu_0(x N)}{\partial x}\right|_{x=1 / 2}}" contenteditable="false"><span></span><span></span></span><br>磁化率:<span class="equation-text" contenteditable="false" data-index="1" data-equation="\chi=\frac{M}{V B}=\frac{\mu^* N r}{V B}=\frac{2 n \mu^{* 2}}{\left.\frac{\partial \mu_0(x N)}{\partial x}\right|_{x=1 / 2}}"><span></span><span></span></span>
低温时
考虑到化学势为:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mu_0(x N)=\left(\frac{3 x N}{4 \pi V}\right)^{2 / 3} \frac{h^2}{2 m}"><span></span><span></span></span>
于是有:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left.\frac{\partial \mu_0(x N)}{\partial x}\right|_{x=1 / 2}=\frac{2^{4 / 3}}{3}\left(\frac{3 N}{4 \pi V}\right)^{2 / 3} \frac{h^2}{2 m} "><span></span><span></span></span>.
<span class="equation-text" data-index="0" data-equation="\chi_0=\frac{2 n \mu^{* 2}}{\frac{4}{3} \varepsilon_F}=\frac{3}{2} n \mu^{* 2} / \varepsilon_F .(T\rightarrow0)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\chi \simeq \chi_0\left[1-\frac{\pi^2}{12}\left(\frac{k T}{\varepsilon_F}\right)^2\right](有限温度)"><span></span><span></span></span><br>
高温时
无限高温:<br><br><span class="equation-text" data-index="0" data-equation="f_{3 / 2}(z) \simeq z" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\begin{gathered}\mu_0(x N)=k T \ln \left(x N \lambda^3 / V\right) \\\left.\frac{\partial \mu_0(x N)}{\partial x}\right|_{x=1 / 2}=2 k T \\\chi_{\infty}=n \mu^{* 2} / k T\end{gathered}"><span></span><span></span></span><br>
有限高温:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="f_{3 / 2}(z) \approx z-\left(z^2 / 2^{3 / 2}\right)"><span></span><span></span></span>)<br><span class="equation-text" data-index="1" data-equation="\chi \simeq \chi_{\infty}\left(1-\frac{n \lambda^3}{2^{5 / 2}}\right)" contenteditable="false"><span></span><span></span></span><br>
此外还有轨道运动的磁性,这会形成朗道能级,以至于产生朗道抗磁性
8.3 金属中的电子气
出发点:第一节的内容用在金属模型中,即索末菲模型,<font color="#ffffff">这是强简并气体</font>
同样是通过粒子数守恒反推化学势与温度的关系
15、费米能级的物理含义
费米能级是费米系统中T=0时的化学势,<br>T=0时,当能量低于费米能级,所有的能级将填满,反之全空。<br><br>通过费米能级可以定义费米动量、费米速
16、什么是电子气体的简并压?
0K是电子的平均能量为3/5μ(0),这个能量对应的压强是<br>电子简并压,可达10^10Pa,这一简并压将于电子与离子<br>的静电力相补偿
17、电子的热容对固体的贡献?
电子热容与温度成正比,但是系数极小,只有在极低温时,离子振动热容按三次方<br>衰减时,电子的热容才成为主要贡献。
几个典型数值:
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left(\varepsilon_F\right)_{\mathrm{Na}}=5.03 \times 10^{-12} \mathrm{erg}=3.14 \mathrm{eV}\\\begin{aligned}\left(T_F\right)_{\mathrm{Na}} & \left.=\left(1.16 \times 14^4\right) \varepsilon_F \quad \text { (以 } \mathrm{eV} \text { 为单位 }\right) \\& =3.64 \times 10^4 \mathrm{~K},\end{aligned}"><span></span><span></span></span><br>
基于最概然分布的统计理论
第七章 玻色统计和费米统计
11、什么是非简并气体
指的是满足非简并条件的气体,无论是玻色子还是费米子构成,都可以<br>用玻尔兹曼分布描述
12、什么是内能的量子统计关联项?
是指满足非简并条件的弱简并玻色或费米气体的内能相较<br>非简并气体有一个附加项,玻色附加为负,等价一个“吸附<br>作用”,费米附加为正,等价一个“排斥作用”。这是量子<br>的全同性原理导致的。
化学势的引入
化学势的物理含义
来自于开系的吉布斯函数的微分表达式:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="dG=-SdT+Vdp+\mu dn"><span></span><span></span></span>
从该式可以看出,<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mu = (\frac{\partial G}{\partial n})|_{T,p}"><span></span><span></span></span>,化学势为在保证T、p不变的情况下,体系增加1mol的粒子<br>所增加的吉布斯函数,我们也可以定义为增加1个粒子所增加的吉布斯函数。
化学势是由来判定相变平衡的参数,体系将沿着化学势小的方向相变
化学势引入统计力学
是在推导两个拉格朗日乘子α、β的时候引入的——具体来说,β是<span class="equation-text" data-index="0" data-equation="(dU-Ydy+\frac{\alpha}{\beta}dN)" contenteditable="false"><span></span><span></span></span>的积分因子,而<span class="equation-text" data-index="1" data-equation="\frac{1}{T}" contenteditable="false"><span></span><span></span></span>又是<span class="equation-text" contenteditable="false" data-index="2" data-equation="(dU-Ydy-\mu dN)"><span></span><span></span></span>的积分因子(这是热力学部分的结果),所以就得到了α与μ之间的关系。
化学势的统计力学含义
1、它完全是由<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sum_{l}{a_l}=N"><span></span><span></span></span>来确定,即体系的化学势完全由填充数来决定
在Fermi自由电子气系统中(即二次色散关系),通过态密度可以推得化学势的表达式:<br><span class="equation-text" data-index="0" data-equation="\mu=\varepsilon_{F}\left[1-\frac{\pi^{2}}{12}\left(\frac{k_{B} T}{\varepsilon_{F}}\right)^{2}\right]" contenteditable="false"><span></span><span></span></span>,其中<span class="equation-text" contenteditable="false" data-index="1" data-equation="\varepsilon_{F}=\mu(0)"><span></span><span></span></span>
2、如右边公式所示,费米能级就是0K下的化学势,即0K下的最高填充能量
3、在很多情况下,费米能量和化学势可以混用,因为他们只在随温度变化上有差别,而差别很小
4、在半导体中E_{F}实际上是在讨论μ,因为如果是E_F的话不存在在能隙中的位置差别。<br>但E_F的变化更多的是来自掺杂,即便E_F随温度变化,更多也是在源于杂质的电离程度随温度的变化
费米统计地应用
0 条评论
下一页