热力学与统计物理(part3)
2024-03-20 14:41:42 4 举报
AI智能生成
伊辛模型和相变
作者其他创作
大纲/内容
第十章 相互作用系统:集团展开法
出发点
首先,我们的目标是求配分函数,它是一系列指数函数相加,求和指标是能量,我们把对能量的求和改为对相空间的积分,再把能量项中的只与动量有关的部分直接积分,剩余部分是只与坐标有关的相互作用能量项,我们把这个积分称为位形积分
其次,我们把位形积分中的求和的指数函数变为一系列指数函数的累乘,把每一个乘数写为1+迈耶函数,之后用多项式展开。现在被积函数的每一个相加项它们各自的积分都是一个“N粒子图”或称为“位形”,它们各自都能“因式分解”。
再次,我们定义一个待会有用的概念,叫做<b>集团</b>,是指N粒子图中的一个因式,它是由内部全连接的迈耶函数对所涉及的全部变量积分而成(比如这里是一个N粒子图的5粒子集团:<span class="equation-text" data-index="0" data-equation="\int f_{12} f_{14} f_{15} f_{25} f_{34} \mathrm{~d}^3 r_1 \cdots \mathrm{d}^3 r_N))" contenteditable="false"><span></span><span></span></span>。之后把具有共同粒子数目<span class="equation-text" contenteditable="false" data-index="1" data-equation="l"><span></span><span></span></span>的所有集团的求和定义为“集团积分”(,前面要乘以一个待会有用的系数):<span class="equation-text" data-index="2" data-equation="b_l(V, T)=\frac{1}{l ! \lambda^{3(l-1)} V} \times(\text { 所有可能的 } l \text { 集团之和 })" contenteditable="false"><span></span><span></span></span>。
之后,我们考虑一个N粒子图是如何划分为若干个“集团”的:即{<span class="equation-text" data-index="0" data-equation="m_l" contenteditable="false"><span></span><span></span></span>}个l集团。我们把由分布{<span class="equation-text" data-index="1" data-equation="m_l" contenteditable="false"><span></span><span></span></span>}所规定的所有N粒子图视为一个类别,称之为一个“图形集体”or“模式积分”<span class="equation-text" data-index="2" data-equation="S\left\{m_l\right\}" contenteditable="false"><span></span><span></span></span>。可以发现所有的“图形集体”求和就得到了位形积分<span class="equation-text" contenteditable="false" data-index="3" data-equation="Z_N(V, T)=\sum_{\left\{m_l\right\}}^{\prime} S\left\{m_l\right\}"><span></span><span></span></span>
最关键的就是求“图形集体”<span class="equation-text" data-index="0" data-equation=" S\left\{m_l\right\}" contenteditable="false"><span></span><span></span></span>:它本质上是所有<span class="equation-text" data-index="1" data-equation="\left\{m_l\right\}" contenteditable="false"><span></span><span></span></span>所规定的的N粒子图的累加,所以我们通过逻辑推理,给图一个倍增因子和一个倍缩因子,结合“集团积分”,给出了<span class="equation-text" contenteditable="false" data-index="2" data-equation="S\left\{m_l\right\}=\prod_{l=1}^N\left\{\left(b_l \frac{V}{\lambda^3}\right)^{m_l} \frac{1}{m_{l} !}\right\}"><span></span><span></span></span>
所以<br>位形积分给出:<span class="equation-text" data-index="0" data-equation="Z_N(V, T)=N ! \lambda^{3 N} \sum_{\left\{m_l\right\}}^{\prime}\left[\prod_l\left\{\left(b_l \frac{V}{\lambda^3}\right)^{m_l} \frac{1}{m_{l} !}\right\}\right]" contenteditable="false"><span></span><span></span></span><br>配分函数给出:<span class="equation-text" data-index="1" data-equation="Q_N(V, T)=\sum_{\left\{m_l\right\}}^{\prime}\left[\prod_{l=1}^N\left\{\left(b_l \frac{V}{\lambda^3}\right)^{m_l} \frac{1}{m_{l} !}\right\}\right]" contenteditable="false"><span></span><span></span></span><br>巨配分函数给出:<span class="equation-text" contenteditable="false" data-index="2" data-equation="\Xi(V,T)=\prod_{l=1}^{\infty}\left[\exp \left(b_l z^l \frac{V}{\lambda^3}\right)\right]=\exp \left[\sum_{l=1}^{\infty} b_l z^l \frac{V}{\lambda^3}\right]"><span></span><span></span></span>
最后得到热力学量:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}\frac{P}{k T} \equiv \left(\frac{1}{V} \ln \mathscr{Q}\right)=\frac{1}{\lambda^3} \sum_{l=1}^{\infty} b_l z^l \\\frac{N}{V}=\left(\frac{z}{V} \frac{\partial \ln \mathscr{Q}}{\partial z}\right)=\frac{1}{\lambda^3} \sum_{l=1}^{\infty} l b_l z^l\end{gathered}"><span></span><span></span></span>
10.2~3 位力展开与位力系数计算
位力展开:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{P v}{k T}=\sum_{l=1}^{\infty} a_l(T)\left(\frac{\lambda^3}{v}\right)^{l-1}"><span></span><span></span></span>
前四阶位力系数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}a_1=b_1 \equiv 1, \\a_2=-b_2=-\frac{2 \pi}{\lambda^3} \int_0^{\infty}\left(\mathrm{e}^{-u(r) / k T}-1\right) r^2 \mathrm{~d} r, \\a_3=4 b_2^2-2 b_3=-\frac{1}{3 \lambda^6} \int_0^{\infty} \int_0^{\infty} f_{12} f_{13} f_{23} \mathrm{~d}^3 r_{12} \mathrm{~d}^3 r_{13}, \\a_4=-20 b_2^3+18 b_2 b_3-3 b_4=\cdots,\end{gathered}"><span></span><span></span></span>
用不可约集团积分来表示
不可约集团是指至少有一个闭合图形的集团
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\beta_{l-1}=\frac{1}{(l-1) ! \lambda^{3(l-1)} V} \times(\text { 所有不可约 } l \text { 集团之和 })"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a_l=-\frac{l-1}{l} \beta_{l-1}"><span></span><span></span></span>
计算第二位力系数
一般也指计算到第二位
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a_2=-b_2=\frac{2 \pi}{\lambda^3} \int_0^{\infty}\left(1-\mathrm{e}^{-u(r) / k T}\right) r^2 \mathrm{~d} r"><span></span><span></span></span>
以Lennard-Jones势为例
<span class="equation-text" contenteditable="false" data-index="0" data-equation="u(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^6\right]"><span></span><span></span></span>
近似为:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left.u(r)=+\infty \quad \text { (对于 } r<r_0\right)\\u(r)=-u_0\left(r_0 / r\right)^6 \quad\left(\text { 对于 } r \geqslant r_0\right)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a_2=\frac{2 \pi}{\lambda^3}\left[\int_0^{r_0} r^2 \mathrm{~d} r+\int_{r_0}^{\infty}\left[1-\exp \left\{\frac{u_0}{k T}\left(\frac{r_0}{r}\right)^6\right\}\right] r^2 \mathrm{~d} r\right]"><span></span><span></span></span>
假定<span class="equation-text" data-index="0" data-equation="\left(u_0 / k T\right) \ll 1" contenteditable="false"><span></span><span></span></span>,即使得第二项积分中的被积函数近似为<span class="equation-text" contenteditable="false" data-index="1" data-equation="-\left(u_0 / k T\right)\left(\frac{r_0}{r}\right)^6"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a_2 \simeq \frac{2 \pi r_0^3}{3 \lambda^3}\left(1-\frac{u_0}{k T}\right)"><span></span><span></span></span>
所以<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}P & \simeq \frac{k T}{v}\left\{1+\frac{2 \pi r_0^3}{3 v}\left(1-\frac{u_0}{k T}\right)\right\} \\& =\frac{k T}{v}\left\{1+\frac{B_2(T)}{v}\right\}\end{aligned}"><span></span><span></span></span>
改写为范德瓦尔斯方程:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\left(P+\frac{2 \pi r_0^3 u_0}{3 v^2}\right) \simeq \frac{k T}{v}\left(1+\frac{2 \pi r_0^3}{3 v}\right) \simeq \frac{k T}{V}\left(1-\frac{2 \pi r_0^3}{3 v}\right)^{-1},\\\left(P+\frac{a}{v^2}\right)(v-b) \simeq k T,\\a=\frac{2 \pi r_0^3 u_0}{3} \text { 和 } b=\frac{2 \pi r_0^3}{3} \equiv 4 v_0 \text {. }"><span></span><span></span></span><br>
第十二章 相变:临界线、普适性和标度性
背景:当我们研究给定系统的热力学函数时,会遇到解析上的不连续性或奇异性。出现这种情况,即喻示着系统在此处发生了形形色色的相变比如:气体的凝聚、固体的熔化、与多相共存相关的现象(特别在临界点周围)、混合物与溶液的行为(包括相分离的发生)、铁磁与反铁磁现象、合金中的有序-无序相变、正常材料到超导材料的相变等。<br>在这些系统中,粒子之间的相互作用无法再通过坐标变换的方法来“移除';相应地,整个系统的能级与各单一组分的能级之间也不再有任何简单联系。相反,在适当条件下,<b style=""><font color="#e74f4c">系统大量微观组分之间的相互作用会变得相当强,且呈现出合作行为</font></b>。当系统的温度为某一特定温度Tc时,合作行为会具有宏观效应,我们在研究合作现象时所遭遇的数学问题相当复杂难解.<br>为了简化运算,我们不得不引入模型,以对粒子间的相互作用做简单化处理但是那些关乎合作行为的特性则仍被保留下来。于是我们期待通过对简化模型进行理论研究(解析处理仍要面对巨大困难),能够重现真实物理系统所发生现象的最基本特性。以磁性相变为例,我们可以考虑一个晶格结构其中只计及最近邻自旋对之间的相互作用,其他相互作用统统予以忽略,我们会发现,如此简化的模型抓住了磁性相变现象的所有基本特性,特别是临界点附近区域的性质
出发点:<br>本章讲述了两个问题,<br>第一、是由范德瓦尔斯方程出发通过化学势求出临界点,并求出普适的vdW方程,并通过在临界点附近做小量展开求出在不同逼近方式下接近临界点时的P、v、T两两之间的标度关系,即临界现象;<br>第二、由交换能出发加上最近邻格点的近似,考虑半整数自旋模型——即伊辛模型,给出铁磁序的一般描述。<br>第三、用朗道连续相变理论给出等效地描述;<br>第四、定义临界指数,定量地描述临界现象
12.2 范德瓦尔斯气体的凝聚
麦克斯韦平整法修正相图
为什么要修正?<br>——因为等温线中斜率至多等于零,这是系统无限可压缩,即等温压缩系数无穷大;但p(v)斜率永远不可能大于零,因为如果大于零,就意味着压缩它会对外做功,这是显然不正确的。
范德瓦尔斯方程
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P=\frac{R T}{v-b}-\frac{a}{v^2},"><span></span><span></span></span>
a是描述系统中分子之间吸引力强度的参量;b是衡量分子所占据的“有效空间”,它等于4倍分子体积
推导普适的vdW方程
出发点:通过简单的分析可知,所有的<span class="equation-text" data-index="0" data-equation="v_l(T) " contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="1" data-equation="v_g(T)" contenteditable="false"><span></span><span></span></span> 所对应的点组成了一条曲线我们称之为共存线;之所以有这样的名称,显然是因为汽相和液相可以在该曲线所包围的区域之内共存.曲线的顶端即是系统的临界点,在那一点<span class="equation-text" data-index="2" data-equation="v_l = v_g" contenteditable="false"><span></span><span></span></span>. 最后,温度<span class="equation-text" data-index="3" data-equation="T =T_c" contenteditable="false"><span></span><span></span></span>对应的等温线理所当然会通过临界点,我们称它为系统的临界等温线.一眼就能看出临界点是临界等温线的拐点,在这一点上,<span class="equation-text" contenteditable="false" data-index="4" data-equation="\left(\partial P / \partial v\right)_T"><span></span><span></span></span>和<span class="equation-text" data-index="5" data-equation="\left(\partial^2 P / \partial^2 v\right)_T" contenteditable="false"><span></span><span></span></span>同时为0.
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}& P_{\mathrm{c}}=\frac{a}{27 b^2}, \quad v_{\mathrm{c}}=3 b, \quad T_{\mathrm{c}}=\frac{8 a}{27 b R} \\& \mathscr{K} \equiv R T_{\mathrm{c}} / P_{\mathrm{c}} v_{\mathrm{c}}=8 / 3=2.666 \cdots\end{aligned}"><span></span><span></span></span>
引入约化变量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_r=\frac{P}{P_{\mathrm{c}}}, \quad v_r=\frac{v}{v_{\mathrm{c}}}, \quad T_r=\frac{T}{T_{\mathrm{c}}}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left(P_r+\frac{3}{v_r^2}\right)\left(3 v_r-1\right)=8 T_r"><span></span><span></span></span>
考察系统在临界点紧邻区域的行为
令<span class="equation-text" data-index="0" data-equation="P_r=1+\pi, \quad v_r=1+\psi, \quad T_r=1+t" contenteditable="false"><span></span><span></span></span>,<br>方程变为<span class="equation-text" contenteditable="false" data-index="1" data-equation="\pi\left(2+7 \psi+8 \psi^2+3 \psi^3\right)+3 \psi^3=8 t\left(1+2 \psi+\psi^2\right)"><span></span><span></span></span><br>做各种近似
1、临界等温线上t=0的P(v)行为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\pi \approx-\frac{3}{2} \psi^3"><span></span><span></span></span>
它表征临界等温线在临界点处的“平直程度”<br>
2、考虑从下方接近临界点时的P(T)行为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\pi \approx 4 t"><span></span><span></span></span>
3、<font color="#ffffff">考虑从下方接近临界点时</font>的v(T)行为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\psi_{1,3} \approx \pm 2|t|^{1 / 2}"><span></span><span></span></span>
4、等温压缩率
高于临界温度时,沿着等容线接近临界点
<span class="equation-text" contenteditable="false" data-index="0" data-equation="-\left(\frac{\partial \psi}{\partial \pi}\right)_{t \rightarrow 0+} \approx \frac{1}{6 t}"><span></span><span></span></span>
低于临界温度,沿着共存线接近临界点
<span class="equation-text" contenteditable="false" data-index="0" data-equation="-\left(\frac{\partial \psi}{\partial \pi}\right)_{t \rightarrow 0-} \approx \frac{1}{12|t|}"><span></span><span></span></span>
12.3、12.5 铁磁相变与伊辛模型零级近似
引入交换相互作用
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}K_{i j} & =\int \psi_i^*(1) \psi_j^*(2) u_{i j} \psi_j(2) \psi_i(1) \mathrm{d} \tau_1 \mathrm{~d} \tau_2 \\J_{i j} & =\int \psi_j^*(1) \psi_i^*(2) u_{i j} \psi_j(2) \psi_i(1) \mathrm{d} \tau_1 \mathrm{~d} \tau_2\end{aligned}"><span></span><span></span></span>
将↑↑和↑↓两个状态的相互作用能量用自旋算符表达
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\varepsilon_{i j}=\text { 常数 }-2 J_{i j}\cdot\left(\boldsymbol{s}_i \cdot \boldsymbol{s}_j\right)"><span></span><span></span></span>
海森堡模型
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E=\text { 常数 }-2 J \sum_{n, n .}\left(s_i \cdot s_j\right)"><span></span><span></span></span>
伊辛模型
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E=\text { 常数 }-J \sum_{\mathrm{n}, \mathrm{n} .} \sigma_i \sigma_j"><span></span><span></span></span>
伊辛模型外场下的哈密顿量和配分函数以及热力学量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="H\left\{\sigma_i\right\}=-J \sum_{\text {n.n. }} \sigma_i \sigma_j-\mu B \sum_i \sigma_i"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}Q_N(B, T) & =\sum_{\sigma_1} \sum_{\sigma_2} \cdots \sum_{\sigma_N} \exp \left[-\beta H\left\{\sigma_i\right\}\right] \\& =\sum_{\sigma_1} \sum_{\sigma_2} \cdots \sum_{\sigma_N} \exp \left[\beta J \sum_{\text {n.n. }} \sigma_i \sigma_j+\beta \mu B \sum_i \sigma_i\right]\end{aligned}"><span></span><span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}& A(B, T)=-k T \ln Q_N(B, T) \\& U(B, T)=-T^2 \frac{\partial}{\partial T}\left(\frac{A}{T}\right)=k T^2 \frac{\partial}{\partial T} \ln Q_N, \\& C(B, T)=\frac{\partial U}{\partial T}=-T \frac{\partial^2 A}{\partial T^2} \text {, } \\& \bar{M}(B, T)=\mu \overline{\left(\sum_i \sigma_i\right)}=\overline{\left(-\frac{\partial H}{\partial B}\right)}=\frac{1}{\beta}\left(\frac{\partial \ln Q_N}{\partial B}\right)_T=-\left(\frac{\partial A}{\partial B}\right)_T \\&\end{aligned}"><span></span><span></span></span>
用<span class="equation-text" data-index="0" data-equation="N_+" contenteditable="false"><span></span><span></span></span>(自旋向上的总数目)和<span class="equation-text" contenteditable="false" data-index="1" data-equation="N_{++}"><span></span><span></span></span>(“上-上”最近邻对的总数目)等简化对位形(微观状态数)的研究
<span class="equation-text" data-index="0" data-equation="\begin{aligned}& q N_{+}=2 N_{++}+N_{+-} \\& q N_{-}=2 N_{--}+N_{+-}\end{aligned}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="N_{-}=N- N_{+}, \quad N_{+-}=q N_{+}-2 N_{++}, \quad N_{--}=\frac{1}{2} q N-q N_{+}+N_{++}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="2" data-equation="N_{++}+N_{--}+N_{+-}=\frac{1}{2} q N"><span></span><span></span></span><br>
q为配位数,比如一维链,q=2<br>二位正方形格子,q=4<br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}H_N\left(N_{+}, N_{++}\right) & =-J\left(N_{++}+N_{--}-N_{+-}\right)-\mu B\left(N_{+}-N_{-}\right) \\& =-J\left(\frac{1}{2} q N-2 q N_{+}+4 N_{++}\right)-\mu B\left(2 N_{+}-N\right)\end{aligned}"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="Q_N(B, T)=\sum_{N_{+}, N_{++}} g_N\left(N_{+}, N_{++}\right) \exp \left\{-\beta H_N\left(N_{+}, N_{++}\right)\right\}\\=e^{\beta N\left(\frac{1}{2} q J-\mu B\right)} \sum_{N_{+}=0}^N e^{-2 \beta(q J-\mu B) N_{+}} \sum_{N_{++}}^{\prime} g_N\left(N_{+}, N_{++}\right) e^{4 \beta J N_{++}}" contenteditable="false"><span></span><span></span></span><br>注:这里的带撇求和表示满足式子<span class="equation-text" contenteditable="false" data-index="1" data-equation="q N_{+}=2 N_{++}+N_{+-}"><span></span><span></span></span>的求和
平均场假设 也称为 Bragg Williams假设
假设内容:给定系统中,单个原子的能量是由整个系统的(<b>平均</b>)有序度来决定的,而非取决于相邻原子的位形(<b>涨落</b>)。<br>我们预期随着晶格配位数<span class="equation-text" contenteditable="false" data-index="0" data-equation="q\rarr \infin"><span></span><span></span></span> (即对于某一原子而言,能与之相互作用的近邻数目增加),局域涨落所造成的影响会越来越小,从而由这个近似所得到的结果就会越来越可靠<br>这里的处理方式不是求配分函数,而是直接<font color="#ffffff">修改哈</font><font color="#ffffff">密</font><font color="#ffffff">顿</font><font color="#ffffff">量,并且将热力学量写成序参量的函数,通过利用玻尔兹曼原理建立序参量的自洽方程来求这些热力学量</font>
有序度指的是长程有序的程度。长程序意指在超过原子、晶格的尺度范围来看晶格的排布的顺序性,<br>比如全是自旋向上,又比如全是一正一反的排布下去。
定义序参量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="L=\frac{1}{N} \sum_i \sigma_i=\frac{N_{+}-N_{-}}{N}=2 \frac{N_{+}}{N}-1 \quad(-1 \leqslant L \leqslant+1)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{\sigma} \equiv \bar{L}"><span></span><span></span></span> 其物理含义等价于平均自旋
<span class="equation-text" contenteditable="false" data-index="0" data-equation="N_{+}=\frac{N}{2}(1+L) \text { 和 } N_{-}=\frac{N}{2}(1-L) \text {. }\\M=\left(N_{+}-N_{-}\right) \mu=N \mu L \quad(-N \mu \leqslant M \leqslant+N \mu)"><span></span><span></span></span><br>
由<span class="equation-text" data-index="0" data-equation="H\left\{\sigma_i\right\}=-J \sum_{\text {n.n. }} \sigma_i \sigma_j-\mu B \sum_i \sigma_i" contenteditable="false"><span></span><span></span></span>,将第一部分做出最关键的近似——<span class="equation-text" data-index="1" data-equation="-J\left(\frac{1}{2} q \bar{\sigma}\right) \sum_i \sigma_i" contenteditable="false"><span></span><span></span></span>:含义为,对于给定<span class="equation-text" data-index="2" data-equation=" \sigma_i" contenteditable="false"><span></span><span></span></span>, 我们把每一个最近邻自旋<span class="equation-text" contenteditable="false" data-index="3" data-equation="\sigma_j"><span></span><span></span></span>都替换成<span class="equation-text" data-index="4" data-equation="\bar{\sigma}" contenteditable="false"><span></span><span></span></span>(一共有q个,并且,考虑到求和时会重复计算粒子对,故而再要加上因子1/2),然后,给出下式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}E=-\frac{1}{2}(q J \bar{L}) N L-(\mu B) N L . \\<E>=-\frac{1}{2} q J N \bar{L}^2-\mu B N \bar{L} .\end{gathered}"><span></span><span></span></span>
一个自旋翻转所需要的能量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\Delta \varepsilon & =-J(q \bar{\sigma}) \Delta \sigma-\mu B \Delta \sigma \\& =2 \mu\left(\frac{q J}{\mu} \bar{\sigma}+B\right)\end{aligned}"><span></span><span></span></span>
注意到这里相比原来的式子少了因子1/2,这是因为原来1/2的因子来源于相邻粒子的重复计数,而此处已经没有重复计数了
从而定义出Weiss分子场
<span class="equation-text" contenteditable="false" data-index="0" data-equation="B^{\prime}=q J \bar{\sigma} / \mu=q J\left(\bar{M} / N \mu^2\right)"><span></span><span></span></span>
它取决于长程序的平均值,也取决于最近邻耦合强度qJ
计算长程序参量L的期望
利用玻尔兹曼原理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{N}_{-} / \bar{N}_{+}=\exp (-\Delta \varepsilon / k T)=\exp \left\{-2 \mu\left(B^{\prime}+B\right) / k T\right\}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}& \frac{1-\bar{L}}{1+\bar{L}}=\exp \{-2(q J \bar{L}+\mu B) / k T\} \\& \frac{q J \bar{L}+\mu B}{k T}=\frac{1}{2} \ln \frac{1+\bar{L}}{1-\bar{L}}=\tanh ^{-1} \bar{L}\end{aligned}"><span></span><span></span></span><br>
无外场时得到自洽方程
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{L}_0=\tanh \left(\frac{q J \bar{L}_0}{k T}\right)"><span></span><span></span></span><br>
讨论自洽方程的解
通过图解法对斜率的分析得到,方程有解的条件为:<span class="equation-text" contenteditable="false" data-index="0" data-equation="T<q J / k "><span></span><span></span></span>
L与T的临界关系
<span class="equation-text" data-index="0" data-equation="\bar{L}_0=\tanh \left(\bar{L}_0 T_{\mathrm{c}} / T\right)" contenteditable="false"><span></span><span></span></span>做展开,<span class="equation-text" contenteditable="false" data-index="1" data-equation="\tanh x \simeq x-x^3 / 3"><span></span><span></span></span>,
两方面的渐进关系
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{L}_0(T) \approx\left\{3\left(1-T / T_{\mathrm{c}}\right)\right\}^{1 / 2} \quad\left(T \lesssim T_{\mathrm{c}}, B \rightarrow 0\right)\\\bar{L}_0(T) \approx 1-2 \exp \left(-2 T_{\mathrm{c}} / T\right) \quad\left\{\left(T / T_{\mathrm{c}}\right) \ll 1\right\}"><span></span><span></span></span>
能量与比热
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}U_0(T)=-\frac{1}{2} q J N \bar{L}_0^2 \\C_0(T)=-q J N \bar{L}_0 \frac{\mathrm{d} \bar{L}_0}{\mathrm{~d} T}=\frac{N k \bar{L}_0^2}{\left(T / T_{\mathrm{c}}\right)^2 /\left(1-\bar{L}_0^2\right)-T / T_{\mathrm{c}}}\end{gathered}"><span></span><span></span></span>
比热的不连续性:
子主题
零场磁化率
以及趋于零温的磁化率,<span class="equation-text" contenteditable="false" data-index="0" data-equation="\chi_0(T) \approx \frac{4 N \mu^2}{k T} \exp \left(-2 T_{\mathrm{c}} / T\right)"><span></span><span></span></span><br>
序参量与序场的临界行为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{L} \approx\left(3 \mu B / k T_{\mathrm{c}}\right)^{1 / 3} \quad\left(T=T_{\mathrm{c}}, B \rightarrow 0\right)"><span></span><span></span></span>
最后,平均场假设下的最近邻关联函数
由此可以看到晶格中一个最近邻自旋对是“上-上"的概率,恰好等于自旋<br>方向向上"的概率的平方,换句话说,尽管存在最近邻相互作用(用耦合常数<br>J 表征),<b><font color="#ff0000">晶格相邻自旋之间却并不存在任何特殊的关联(这正是平均场近似的缺陷之一)</font></b><br>
进而有:<span class="equation-text" data-index="0" data-equation="\begin{aligned}\bar{N}_{++}= & \frac{1}{2} q N\left(\frac{1+\bar{L}}{2}\right)^2, \quad \bar{N}_{--}=\frac{1}{2} q N\left(\frac{1-\bar{L}}{2}\right)^2, \\& \bar{N}_{+-}=2 \cdot \frac{1}{2} q N\left(\frac{1+\bar{L}}{2}\right)\left(\frac{1-\bar{L}}{2}\right),\end{aligned}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\frac{\bar{N}_{++} \bar{N}_{--}}{\left(\bar{N}_{+-}\right)^2}=\frac{1}{4}"><span></span><span></span></span> .<br>
12.6 伊辛模型一级近似
Bethe近似
出发点:将给定自旋<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sigma_0"><span></span><span></span></span>以及它的q个最近邻自旋视为一个群,在写这个群的哈密顿量时,我们严格地写出中心自旋与它的q个相邻自旋之间的相互作用,而其他自旋之间的相互作用则用品骏分子场B'来写出
群哈密顿量:<span class="equation-text" contenteditable="false" data-index="0" data-equation="H_{q+1}=-\mu B \sigma_0-\mu\left(B+B^{\prime}\right) \sum_{j=1}^q \sigma_j-J \sum_{j=1}^q \sigma_0 \sigma_j"><span></span><span></span></span>
群配分函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}Q & =\sum_{\sigma_0, \sigma_j=\pm 1} \exp \left[\frac{1}{k T}\left\{\mu B \sigma_0+\mu\left(B+B^{\prime}\right) \sum_{j=1}^q \sigma_j+J \sum_{j=1}^q \sigma_0 \sigma_j\right\}\right] \\& =\sum_{\sigma_0, \sigma_j=\pm 1} \exp \left[\alpha \sigma_0+\left(\alpha+\alpha^{\prime}\right) \sum_{j=1}^q \sigma_j+\gamma \sum_{j=1}^q \sigma_0 \sigma_j\right], \\\alpha & =\frac{\mu B}{k T}, \quad \alpha^{\prime}=\frac{\mu B^{\prime}}{k T} \quad \text { 和 } \gamma=\frac{J}{k T} .\end{aligned}"><span></span><span></span></span>
根据中心自旋的符号拆成两项
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q=Q_{+}+Q_{-},\\\begin{aligned}Q_{\pm} & =\sum_{\sigma_j=\pm 1} \exp \left[\pm \alpha+\left(\alpha+\alpha^{\prime} \pm \gamma\right) \sum_{j=1}^q \sigma_j\right] \\& =\mathrm{e}^{\pm \alpha}\left[2 \cosh \left(\alpha+\alpha^{\prime} \pm \gamma\right)\right]^q .\end{aligned}"><span></span><span></span></span><br>
给出中心自旋的期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{\sigma}_0=\frac{Q_{+}-Q_{-}}{Q},"><span></span><span></span></span>
给出相邻自旋的期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}\bar{\sigma}_j & =\frac{1}{q} \overline{\left(\sum_{j=1}^q \sigma_j\right)}=\frac{1}{q}\left(\frac{1}{Q} \frac{\partial Q}{\partial \alpha^{\prime}}\right) \\& =\frac{1}{Q}\left\{Q_{+} \tanh \left(\alpha+\alpha^{\prime}+\gamma\right)+Q_{-} \tanh \left(\alpha+\alpha^{\prime}-\gamma\right)\right\}\end{aligned}"><span></span><span></span></span>
关键一步,建立自洽方程:<b><font color="#e74f4c">中心自旋的平均值应当与相邻自旋的平均值相同</font></b>
<strike><span class="equation-text" data-index="0" data-equation="\left.Q_{+}\left\{1-\tanh ( \alpha+\alpha^{\prime}+\gamma\right)\right\}=Q_{-}\left\{1+\tanh \left(\alpha+\alpha^{\prime}-\gamma\right)\right\}" contenteditable="false"><span></span><span></span></span><br></strike><span class="equation-text" contenteditable="false" data-index="1" data-equation="\mathrm{e}^{2 \alpha^{\prime}}=\left\{\frac{\cosh \left(\alpha+\alpha^{\prime}+\gamma\right)}{\cosh \left(\alpha+\alpha^{\prime}-\gamma\right)}\right\}^{q-1}"><span></span><span></span></span><br>
注:
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\alpha^{\prime}=\frac{\mu B^{\prime}}{k T}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="B^{\prime}=q J \bar{\sigma} / \mu=q J\left(\bar{M} / N \mu^2\right)"><span></span><span></span></span>
讨论是否存在自发磁化
出发点:上述自洽方程是为了求解α',也可以说是为了求解B'或者说L。<br>现在在零场下做这件事
<span class="equation-text" data-index="0" data-equation="\alpha^{\prime}=\frac{q-1}{2} \ln \left\{\frac{\cosh \left(\alpha^{\prime}+\gamma\right)}{\cosh \left(\alpha^{\prime}-\gamma\right)}\right\}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\alpha^{\prime}=(q-1) \tanh \gamma\left\{\alpha^{\prime}-\operatorname{sech}^2 \gamma \frac{\alpha^{\prime 3}}{3}+\cdots\right\}"><span></span><span></span></span><br>
有解的临界条件为:<span class="equation-text" data-index="0" data-equation="(q-1) \tanh \gamma>1\\\gamma>\gamma_{\mathrm{c}}=\tanh ^{-1}\left(\frac{1}{q-1}\right)=\frac{1}{2} \ln \left(\frac{q}{q-2}\right)" contenteditable="false"><span></span><span></span></span><br>或表达为:<span class="equation-text" contenteditable="false" data-index="1" data-equation="T<T_{\mathrm{c}}=\frac{2 J}{k} / \ln \left(\frac{q}{q-2}\right)"><span></span><span></span></span>
注:这里的临界温度比平均场的更低,相互关联的考虑让相变发生地更不容易。因为涨落更大,或破坏长程序
解析解
T接近<span class="equation-text" contenteditable="false" data-index="0" data-equation="T_c"><span></span><span></span></span>时<span class="equation-text" data-index="1" data-equation="\begin{aligned}\alpha^{\prime} & \simeq\left\{3 \cosh ^2 \gamma_c[(q-1) \tanh \gamma-1]\right\}^{1 / 2} \simeq\left\{3(q-1)\left(\gamma-\gamma_c\right)\right\}^{1 / 2} \\& \simeq\left\{3(q-1) \frac{J}{k T_{\mathrm{c}}}\left(1-\frac{T}{T_{\mathrm{c}}}\right)\right\}^{1 / 2} .\end{aligned}" contenteditable="false"><span></span><span></span></span><br>
零场下,序参量<span class="equation-text" contenteditable="false" data-index="0" data-equation="L_0"><span></span><span></span></span>与T的关系
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{L}=\frac{\left(Q_{+} / Q_{-}\right)-1}{\left(Q_{+} / Q_{-}\right)+1}=\frac{\sinh \left(2 \alpha+2 \alpha^{\prime}\right)}{\cosh \left(2 \alpha+2 \alpha^{\prime}\right)+\exp (-2 \gamma)}\\\bar{L}_0=\frac{\sinh \left(2 \alpha^{\prime}\right)}{\cosh \left(2 \alpha^{\prime}\right)+\exp (-2 \gamma)} \simeq \frac{2 \alpha^{\prime}}{1+(q-2) / q}=\frac{q}{q-1} \alpha^{\prime}\\\bar{L}_0 \simeq\left[3 \frac{q}{q-1}\left\{\frac{q}{2} \ln \left(\frac{q}{q-2}\right)\right\}\left(1-\frac{T}{T_{\mathrm{c}}}\right)\right]^{1 / 2} "><span></span><span></span></span><br>
注:当q趋近于无穷大时,序参量接近于平均场近似;且T从下方趋近于临界温度时<span class="equation-text" contenteditable="false" data-index="0" data-equation="L_0"><span></span><span></span></span>都是1/2次幂的规律
讨论局域关联
出发点:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{N}_{++}: \bar{N}_{--}: \bar{N}_{+-}:: Q_{++}: Q_{--}: Q_{+-}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{\bar{N}_{++} \bar{N}_{--}}{\left(\bar{N}_{+-}\right)^2}=\frac{1}{4} \mathrm{e}^{4 \gamma}=\frac{1}{4} \mathrm{e}^{4 J / k T} ."><span></span><span></span></span><br>
当J>0 时,同向相邻格点具有正关联,而反向相邻格点则具有负关联.这样的关联是最近邻相互作用所直接导致的.与此相应,在系统中,除了长程序以外,还必存在一种特有的短程序为了看明自这一点我们注意到即使长程序为零(a+ a'= 0) ,系统仍然会保持某种短程序:
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left(\bar{N}_{++}, \bar{N}_{--}, \bar{N}_{+-}\right)_{\bar{L}=0}=\frac{1}{2} q N \frac{\left(\mathrm{e}^\gamma, \mathrm{e}^\gamma, 2 \mathrm{e}^{-\gamma}\right)}{4 \cosh \gamma}"><span></span><span></span></span><br>
一些热力学结论
一些区别于平均场近似而接近真实物理的结论
序参量与序场的临界行为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\bar{L} \approx\left\{3 q^2 \mu B /(q-1)(q-2) k T_{\mathrm{c}}\right\}^{1 / 3} \quad\left(T=T_{\mathrm{c}}, B \rightarrow 0\right)"><span></span><span></span></span>
12.7 12.12 临界指数
正式定义序参量与序场:
一系列临界指数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="m_0 \sim\left(T_{\mathrm{c}}-T\right)^\beta\left(h \rightarrow 0, T \leqslant T_{\mathrm{c}}\right)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\chi_0 \sim\left(\frac{\partial m}{\partial h}\right)_{T, h \rightarrow 0} \sim \begin{cases}\left(T-T_{\mathrm{c}}\right)^{-\gamma} & \left(h \rightarrow 0, T \gtrsim T_{\mathrm{c}}\right) \\ \left(T_{\mathrm{c}}-T\right)^{-\gamma^{\prime}} & \left(h \rightarrow 0, T \lesssim T_{\mathrm{c}}\right)\end{cases}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left.m\right|_{T=T_{\mathrm{c}}} \sim h^{1 / \delta} \quad\left(T=T_{\mathrm{c}}, h \rightarrow 0\right)"><span></span><span></span></span>
汽液共存相:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\left|P-P_{\mathrm{c}}\right|_{T=T_{\mathrm{c}}} \sim\left|\rho-\rho_{\mathrm{c}}\right|^\delta"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="C_V \sim \begin{cases}\left.( T-T_{\mathrm{c}}\right)^{-\alpha} & \left(T \gtrsim T_{\mathrm{c}}\right) \\ \left(T_{\mathrm{c}}-T\right)^{-\alpha^{\prime}} & \left(T \lesssim T_{\mathrm{c}}\right)\end{cases}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\xi \sim t^{-\nu} \quad(h \rightarrow 0, \quad t \gtrsim 0) ."><span></span><span></span></span>关联长度
12.9 朗道连续相变理论
出发点:给出自由能为温度与序场、序参量的函数,考虑其最小值。这些热力学量都用约化量来表示;方程通过导数为0来构建
12.11 关联和涨落的作用
关联函数定义
<span class="equation-text" contenteditable="false" data-index="0" data-equation="g(i, j)=\overline{\sigma_i \sigma_j}-\bar{\sigma}_i \bar{\sigma}_j"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}& \chi \equiv \frac{\partial \bar{M}}{\partial H}=\beta\left(\bar{M}^2-\bar{M}^2\right) \\& =\beta \mu^2\left\{\overline{\left(\sum_i \sigma_i\right)^2}-\overline{\left(\sum_i \sigma_i\right)^2}\right\}=\beta \mu^2 \sum_i \sum_j g(i, j) &\end{aligned}"><span></span><span></span></span>
第十三章 一些模型的精确解
出发点:转移矩阵法
①哈密顿量写为对称形式<span class="equation-text" contenteditable="false" data-index="0" data-equation="H_N\left\{\sigma_i\right\}=-J \sum_{\text {n.n. }} \sigma_i \sigma_j-\mu B \sum_{i=1}^N \sigma_i\\H_N\left\{\sigma_i\right\}=-J \sum_{i=1}^N \sigma_i \sigma_{i+1}-\frac{1}{2} \mu B \sum_{i=1}^N\left(\sigma_i+\sigma_{i+1}\right)"><span></span><span></span></span><br>
②写出新的配分函数<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q_N(B, T)=\sum_{\sigma_1=\pm 1} \cdots \sum_{\sigma_N=\pm 1} \exp \left[\beta \sum_{i=1}^N\left\{J \sigma_i \sigma_{i+1}+\frac{1}{2} \mu B\left(\sigma_i+\sigma_{i+1}\right)\right\}\right]"><span></span><span></span></span>
③构建基于自旋的取法的基和转移矩阵,计算配分函数<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q_N(B, T)=\sum_{\sigma_1=\pm 1}\left\langle\sigma_1\left|\boldsymbol{P}^N\right| \sigma_1\right\rangle=\operatorname{Trace}\left(\boldsymbol{P}^N\right)=\lambda_1^N+\lambda_2^N"><span></span><span></span></span>
④改为计算矩阵的迹,在改为求特征值的N次幂
⑤求大的即可
出发点2:递推关系法(但在零场下)
①写出哈密顿量:<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q_N(T)=\sum_{\sigma_1=\pm 1} \cdots \sum_{\sigma_N=\pm 1} \prod_i \mathrm{e}^{\beta J_i \sigma_i \sigma_{i+1}}"><span></span><span></span></span><br>
②对末尾项求和:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sum_{\sigma_N=\pm 1} \mathrm{e}^{\beta J_{N-1} \sigma_{N-1} \sigma_N}=2 \cosh \left(\beta J_{N-1} \sigma_{N-1}\right)=2 \cosh \left(\beta J_{N-1}\right)"><span></span><span></span></span>
③得到递推关系:<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q_N\left(T ; J_1, \cdots, J_{N-1}\right)=2 \cosh \left(\beta J_{N-1}\right) Q_{N-1}\left(T ; J_1, \cdots, J_{N-2}\right)"><span></span><span></span></span>
④结果:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}Q_N(T)=\prod_{i=1}^{N-1}\left\{2 \cosh \left(\beta J_i\right)\right\} \sum_{\sigma_1=\pm 1} 1=2^N \prod_{i=1}^{N-1} \cosh \left(\beta J_i\right) \\\frac{1}{N} \ln Q_N(T)=\ln 2+\frac{1}{N} \sum_{i=1}^{N-1} \ln \cosh \left(\beta J_i\right)\end{gathered}"><span></span><span></span></span>
求一维伊辛链的关联函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{\sigma_k \sigma_{k+1}}=\frac{1}{Q_N}\left(\frac{1}{\beta} \frac{\partial}{\partial J_k}\right) Q_N=\left(\frac{1}{\beta} \frac{\partial}{\partial J_k}\right) \ln Q_N ."><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="g_k(\text { n.n. })=\overline{\sigma_k \sigma_{k+1}}=\tanh \left(\beta J_k\right)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}& g_k(r)=\overline{\sigma_k \sigma_{k+r}}=\overline{\left(\sigma_k \sigma_{k+1}\right)\left(\sigma_{k+1} \sigma_{k+2}\right) \cdots\left(\sigma_{k+r-1} \sigma_{k+r}\right)} \\& =\frac{1}{Q_N}\left(\frac{1}{\beta} \frac{\partial}{\partial J_k}\right)\left(\frac{1}{\beta} \frac{\partial}{\partial J_{k+1}}\right) \cdots\left(\frac{1}{\beta} \frac{\partial}{\partial J_{k+r-1}}\right) Q_N \\& =\prod_{i=k}^{k+r-1} \tanh \left(\beta J_i\right) &\end{aligned}"><span></span><span></span></span>
第十四章 重正化群
1、标度的概念
尺度的标度变换
<span class="equation-text" contenteditable="false" data-index="0" data-equation="a^{\prime}=l a"><span></span><span></span></span>,l为长度变换倍增的倍数,a为原晶格常数,a'为变换后的晶格常数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="N^{\prime}=l^{-d} N"><span></span><span></span></span>,N是原格点数目;N'是变换后格点数目
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\boldsymbol{r}^{\prime}=l^{-1} \boldsymbol{r}"><span></span><span></span></span>,r为变换后系统的尺度
这是为了保持系统中自由度的空间密度不变,所有空间距离必须用因子l 重新标度。<br><font color="#e324e3">我的理解是这是在为了抵消刚刚晶格常数变大的影响。</font>
热力学参数的标度变换
配分函数应当具有一样的形式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Q=\sum_{\left\{\sigma_i\right\}} \exp \left[-\beta H_N\left\{\sigma_i\right\}\right]\\Q=\sum_{\left\{\sigma_i^{\prime}\right\}} \exp \left[-\beta H_{N^{\prime}}\left\{\sigma_i^{\prime}\right\}\right]"><span></span><span></span></span><br>
期望经过标度变换之后系统的自由能(或者,至少是决定临界现象的那一部分自由能)和原初系统一致.
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}& N^{\prime} \psi^{(s)}\left(t^{\prime}, h^{\prime}\right)=N \psi^{(s)}(t, h) \\& \psi^{(s)}(t, h)=l^{-d} \psi^{(s)}\left(t^{\prime}, h^{\prime}\right)\end{aligned}"><span></span><span></span></span>,其中ψ是单个自旋的自由能
由于t 和t' 的数值都很小,我们可以假设它们之间具有线性关系,中<span class="equation-text" contenteditable="false" data-index="0" data-equation="y_t"><span></span><span></span></span> 暂时还是一个未知数<br>
<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="t^{\prime}=l^{y_t} t"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="\begin{gathered}h^{\prime}=l^{y_h} h \\\psi^{(s)}(t, h)=l^{-d} \psi^{(s)}\left(l^{y_t} t, l^{y_h} h\right)\end{gathered}" contenteditable="false"><span></span><span></span></span>
motivatiom
现在我们要求函数<span class="equation-text" contenteditable="false" data-index="0" data-equation="ψ^{(s)} "><span></span><span></span></span>(它决定了系统的诸多临界行为)实质上不受标度变换的影响,基于这样的考虑,我们应当设法消除表达式中的标度因l。 这实际上就是迫使我们将变量t' 和h' 换成一个与l 无关的单一变量,
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{h^{\prime}}{\left|t^{\prime}\right| y_h / y_t}=\frac{h}{\left.|t|\right|^{y_h / y_t}}=\frac{h}{|t|^{\Delta}}"><span></span><span></span></span><br>
即要求:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{gathered}\psi^{(s)}\left(t^{\prime}, h^{\prime}\right)=\left|t^{\prime}\right|^{d / y_t} \widetilde{\psi}\left(h^{\prime} /\left|t^{\prime}\right|^{\Delta}\right) \\\psi^{(s)}(t, h)=|t|^{d / y_t} \widetilde{\psi}\left(h /|t|^{\Delta}\right)\end{gathered}"><span></span><span></span></span>
临界指数可以从标度变化l和系数y之中推出
<br><span class="equation-text" data-index="0" data-equation="\begin{aligned}& \alpha=2-\left(d / y_t\right)\\ &\beta=2-\alpha-\Delta=\left(d-y_h\right) / y_t \\& \gamma=-(2-\alpha-2 \Delta)=\left(2 y_h-d\right) / y_t \\& \delta=\Delta / \beta=y_h /\left(d-y_h\right)\end{aligned}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\begin{gathered}\nu=1 / y_t \\d \nu=2-\alpha\end{gathered}"><span></span><span></span></span><br>
2、重正化的简单展示——以一维伊辛模型为例<br>
目的是通过朴素的推导,将两个哈密顿量写成相同的形式
3、重正化的一般理论
子主题
4、重整化群的应用——以伊辛模型为例<br>
0 条评论
下一页