平面向量基本公式
2023-08-09 19:48:06 4 举报
AI智能生成
平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量。向量同数量一样,也可以进行运算。向量可以参与多种运算过程,包括线性运算(加法、减法和数乘)、数量积、向量积与混合积等。
作者其他创作
大纲/内容
加法
<span style="font-size: inherit;">已知向量</span><span class="equation-text" data-index="0" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">、</span><span class="equation-text" data-index="1" data-equation="\overrightarrow{BC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">,再作向量</span><span class="equation-text" data-index="2" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">,则向量</span><span class="equation-text" data-index="3" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">叫做</span><span class="equation-text" data-index="4" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">、</span><span class="equation-text" data-index="5" data-equation="\overrightarrow{BC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">的和,记作</span><span class="equation-text" data-index="6" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">+</span><span class="equation-text" data-index="7" data-equation="\overrightarrow{BC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">,即有:</span><span class="equation-text" data-index="8" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">+</span><span class="equation-text" data-index="9" data-equation="\overrightarrow{BC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">=</span><span class="equation-text" contenteditable="false" data-index="10" data-equation="\overrightarrow{AC}"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">。</span><br>
<span class="equation-text" data-index="0" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="1" data-equation="\overrightarrow{BC}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="2" data-equation="\overrightarrow{AC}"><span></span><span></span></span>,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点
已知两个从同一点A出发的两个向量<span class="equation-text" data-index="0" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span>、<span class="equation-text" data-index="1" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span>,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线<span class="equation-text" data-index="2" data-equation="\overrightarrow{AD}" contenteditable="false"><span></span><span></span></span>就是向量<span class="equation-text" data-index="3" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span>、<span class="equation-text" data-index="4" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span>的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点、对角连。
对于零向量和任意向量<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>,有:<span class="equation-text" data-index="1" data-equation="\overrightarrow{0}" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="3" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="4" data-equation="\overrightarrow{0}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="5" data-equation="\overrightarrow{a}"><span></span><span></span></span>。
向量的加法满足所有的加法运算定律,如:交换律、结合律
<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}+\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}+\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="(\overrightarrow{a}+\overrightarrow{b})" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="1" data-equation="\overrightarrow{c}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" contenteditable="false" data-index="3" data-equation="(\overrightarrow{b}+\overrightarrow{c})"><span></span><span></span></span>
减法
<span style="font-size: inherit;">已知向量</span><span class="equation-text" data-index="0" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">、</span><span class="equation-text" data-index="1" data-equation="\overrightarrow{BC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">,再作向量</span><span class="equation-text" data-index="2" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">,则向量</span><span class="equation-text" data-index="3" data-equation="\overrightarrow{CB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">叫做</span><span class="equation-text" data-index="4" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">、</span><span class="equation-text" data-index="5" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">的差,记作</span><span class="equation-text" data-index="6" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span>-<span class="equation-text" data-index="7" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">,即有:</span><span class="equation-text" data-index="8" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span>-<span class="equation-text" data-index="9" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">=</span><span class="equation-text" data-index="10" data-equation="\overrightarrow{CB}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">。</span><br>
<span class="equation-text" data-index="0" data-equation="\overrightarrow{AB}" contenteditable="false"><span></span><span></span></span>-<span class="equation-text" data-index="1" data-equation="\overrightarrow{AC}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="2" data-equation="\overrightarrow{CB}"><span></span><span></span></span>,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。
-(-<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>)=<span class="equation-text" data-index="1" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>;<span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>+(-<span class="equation-text" data-index="3" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>)=(-<span class="equation-text" data-index="4" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>)+<span class="equation-text" data-index="5" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="6" data-equation="\overrightarrow{0}" contenteditable="false"><span></span><span></span></span>;<span class="equation-text" data-index="7" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>-<span class="equation-text" data-index="8" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="9" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>+(-<span class="equation-text" contenteditable="false" data-index="10" data-equation="\overrightarrow{b}"><span></span><span></span></span>)。
数乘
<span style="font-size: inherit;">实数λ与向量</span><span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">的积是一个向量,这种运算叫做向量的数乘,记作λ</span><span class="equation-text" data-index="1" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">。当λ>0时,λ</span><span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span><span style="font-size: inherit; background-color: rgb(255, 255, 255); color: rgb(13, 11, 34); font-family: 微软雅黑; font-weight: 400; text-align: left; font-style: normal; display: inline !important; float: none;">的方向和<span class="equation-text" data-index="3" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>的方向相同,当λ<0时,λ<span class="equation-text" data-index="4" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>的方向和<span class="equation-text" data-index="5" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>的方向相反,当λ=0时,λ<span class="equation-text" data-index="6" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="7" data-equation="\overrightarrow{0}"><span></span><span></span></span>。</span><br>
设λ、μ是实数,那么满足如下运算性质
(λμ)<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>= λ(μ<span class="equation-text" contenteditable="false" data-index="1" data-equation="\overrightarrow{a}"><span></span><span></span></span>)
(λ + μ)<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>= λ<span class="equation-text" data-index="1" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>+ μ<span class="equation-text" contenteditable="false" data-index="2" data-equation="\overrightarrow{a}"><span></span><span></span></span>
λ(<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>±<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>) = λ<span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>± λ<span class="equation-text" contenteditable="false" data-index="3" data-equation="\overrightarrow{b}"><span></span><span></span></span>
(-λ)<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>=-(λ<span class="equation-text" data-index="1" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>) = λ(-<span class="equation-text" contenteditable="false" data-index="2" data-equation="\overrightarrow{a}"><span></span><span></span></span>)
|λ<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>|=|λ||<span class="equation-text" data-index="1" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>|
数量积
已知两个非零向量<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>与<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>, 它们的夹角为θ, 我们把数量l<span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>I l<span class="equation-text" data-index="3" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>Icosθ叫做向量<span class="equation-text" data-index="4" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>与<span class="equation-text" contenteditable="false" data-index="5" data-equation="\overrightarrow{b}"><span></span><span></span></span>的数量积
零向量与任意向量的数量积为0。
<span style="font-size: inherit;">数量积<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>的几何意义是:<span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>的长度|<span class="equation-text" data-index="3" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>|与<span class="equation-text" data-index="4" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>在<span class="equation-text" data-index="5" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>的方向上的投影|<span class="equation-text" contenteditable="false" data-index="6" data-equation="\overrightarrow{b}"><span></span><span></span></span>|cos θ的乘积。</span><br>
数量积具有以下性质
<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" data-index="1" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>=|<span class="equation-text" contenteditable="false" data-index="2" data-equation="\overrightarrow{a}"><span></span><span></span></span>|²
<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="2" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" contenteditable="false" data-index="3" data-equation="\overrightarrow{a}"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·(<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="2" data-equation="\overrightarrow{c}" contenteditable="false"><span></span><span></span></span>)=<span class="equation-text" data-index="3" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" data-index="4" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="5" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" contenteditable="false" data-index="6" data-equation="\overrightarrow{c}"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>⊥<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="2" data-equation="\overrightarrow{0}" contenteditable="false"><span></span><span></span></span>=><span class="equation-text" data-index="3" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" data-index="4" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="5" data-equation="\overrightarrow{0}"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" data-index="2" data-equation="\overrightarrow{0}" contenteditable="false"><span></span><span></span></span>=><span class="equation-text" data-index="3" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>⊥<span class="equation-text" data-index="4" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="5" data-equation="\overrightarrow{0}"><span></span><span></span></span>(a≠0,b≠0)
<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>=k<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span><=><span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>//<span class="equation-text" contenteditable="false" data-index="3" data-equation="\overrightarrow{b}"><span></span><span></span></span>
|<span class="equation-text" data-index="0" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>·<span class="equation-text" data-index="1" data-equation="\overrightarrow{b}" contenteditable="false"><span></span><span></span></span>|≤|<span class="equation-text" data-index="2" data-equation="\overrightarrow{a}" contenteditable="false"><span></span><span></span></span>|·|<span class="equation-text" contenteditable="false" data-index="3" data-equation="\overrightarrow{b}"><span></span><span></span></span>|
e1·e2=|e1||e2|cosθ
0 条评论
下一页