高数上:数列与极限
2023-11-23 15:37:14 4 举报
AI智能生成
数列极限,是数列和极限两个充满不确定性的概念相混合,容易让人产生摸不着头脑,看到题目就害怕的感觉,本篇文章就按以下目录对这块儿重难点拨云见日,内容循序渐进,越往后越精彩。
作者其他创作
大纲/内容
数列
按照某一法则,对每个n ∈ <span class="equation-text" data-index="0" data-equation="N_+" contenteditable="false"><span></span><span></span></span> , 对应着一个确定的实数<span class="equation-text" data-index="1" data-equation="x_n" contenteditable="false"><span></span><span></span></span> , 这些实数<span class="equation-text" data-index="2" data-equation="x_n" contenteditable="false"><span></span><span></span></span> 按照下标从小到大排列得到的一个序列, 记为{<span class="equation-text" contenteditable="false" data-index="3" data-equation="x_n"><span></span><span></span></span>}
项:数列中的每一个数
一般项(通项):第 n 项 <span class="equation-text" contenteditable="false" data-index="0" data-equation="x_n"><span></span><span></span></span>
数列极限
定义:{<span class="equation-text" data-index="0" data-equation="x_n" contenteditable="false"><span></span><span></span></span>} 为一数列, 如果存在常数 a,对于任意给定的正数 ε(不论它多么小),总存在正整数 N,使得当 n>N 时,不等式 |<span class="equation-text" data-index="1" data-equation="x_n" contenteditable="false"><span></span><span></span></span>-a| < ε 都成立,<br>那么就称常数a是数列 {<span class="equation-text" data-index="2" data-equation="x_n" contenteditable="false"><span></span><span></span></span>} 的极限,或者称数列 {<span class="equation-text" data-index="3" data-equation="x_n" contenteditable="false"><span></span><span></span></span>} 收敛于 a,记为 <span class="equation-text" contenteditable="false" data-index="4" data-equation="\lim_{n \to \infty}x_n"><span></span><span></span></span> = a
{<span class="equation-text" data-index="0" data-equation="x_n" contenteditable="false"><span></span><span></span></span>}为数列,<span class="equation-text" data-index="1" data-equation="\forall" contenteditable="false"><span></span><span></span></span> ε (任意小的距离)> 0 , <span class="equation-text" data-index="2" data-equation="\exists" contenteditable="false"><span></span><span></span></span> 正整数 N(某项) , 当n(这项后头的所有项)>N时,|<span class="equation-text" contenteditable="false" data-index="3" data-equation="x_n"><span></span><span></span></span>-a| < ε (都落在小区间的里头) ,a 是极限
解题格式: <span class="equation-text" data-index="0" data-equation="\forall" contenteditable="false"><span></span><span></span></span> ε >0 ,取N = ?,n > N时,|<span class="equation-text" contenteditable="false" data-index="1" data-equation="x_n"><span></span><span></span></span>-a(?)| = ?< ε
收敛数列的性质
极限的唯一性
如果数列 {<span class="equation-text" contenteditable="false" data-index="0" data-equation="x_n"><span></span><span></span></span>} 收敛,那么它的极限唯一
收敛数列的有界性
如果数列 {<span class="equation-text" data-index="0" data-equation="x_n" contenteditable="false"><span></span><span></span></span>} 收敛,那么数列 {<span class="equation-text" contenteditable="false" data-index="1" data-equation="x_n"><span></span><span></span></span>} 一定有界
有界不一定收敛,例如 {<span class="equation-text" contenteditable="false" data-index="0" data-equation=" (-1)^{n+1}"><span></span><span></span></span>} , 虽有界但不收敛
收敛数列的保号性
如果<span class="equation-text" data-index="0" data-equation="\lim_{n \to \infty}x_n" contenteditable="false"><span></span><span></span></span>=a , 且a > 0(或 a < 0) , 那么存在正整数N,当 n > N 时,都有<span class="equation-text" data-index="1" data-equation="x_n" contenteditable="false"><span></span><span></span></span>>0(或 <span class="equation-text" contenteditable="false" data-index="2" data-equation="x_n"><span></span><span></span></span>< 0)
推论:如果数列从某项起有 <span class="equation-text" data-index="0" data-equation="x_n" contenteditable="false"><span></span><span></span></span> ≧0(或 <span class="equation-text" data-index="1" data-equation="x_n" contenteditable="false"><span></span><span></span></span> ≦ 0),且 <span class="equation-text" contenteditable="false" data-index="2" data-equation="\lim_{n \to \infty}x_n"><span></span><span></span></span> = a , 那么 a≧0(或 a ≦ 0 )
收敛数列与其子数列间的关系
如果数列收敛于 a ,那么它的任意子数列也收敛,且极限也是 a
子数列:{ <span class="equation-text" contenteditable="false" data-index="0" data-equation="x_{n_k}"><span></span><span></span></span> }, k=1、2、3......
若数列有两个子数列收敛于不同的极限,则原数列一定发散,例如:<span class="equation-text" contenteditable="false" data-index="0" data-equation="(-1)^{n+1}"><span></span><span></span></span>
0 条评论
下一页