三角函数详细版
2023-08-18 15:00:23 9 举报
AI智能生成
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
作者其他创作
大纲/内容
任意角的概念
角的定义
平面内一条射线绕着它的端点旋转所成的图形叫做角
角的分类
按照旋转方向
正角
负角
零角
按照终边位置
第一象限角
第二象限角
第三象限角
第四象限角
同角三角函数的基本关系式
<span class="equation-text" data-index="0" data-equation="\sin^{2}\alpha" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" contenteditable="false" data-index="1" data-equation="\cos^{2}\alpha"><span></span><span></span></span>=1
三角函数的诱导公式
角2kπ+α(k∈Z)与角的三角函数值之间的关系
sin(2kπ+α)=sinα,k∈z
cos(2kπ+α)=cosα,k∈z
tan(2kπ+α)=tanα,k∈z
角α与角-α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
角π+α与角α的三角函数值之间的关系
sin(π+α)=-sinα,k∈z<br>sin(π-α)=-sinα,k∈z
cos(π+α)=-cosα,k∈z<br>cos(π-α)=-cosα,k∈z
tan(π+α)=tanα,k∈z<br>tan(π-α)=-tanα,k∈z
角<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{π}{2}+α"><span></span><span></span></span>与角α的三角函数值之间的关系
<span class="equation-text" data-index="0" data-equation="sin(\frac{π}{2}+\alpha)" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="1" data-equation="cos\alpha"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="sin(\frac{π}{2}-\alpha)" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="1" data-equation="cos\alpha"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="cos(\frac{π}{2}-\alpha)" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="1" data-equation="-sin\alpha"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="cos(\frac{π}{2}-\alpha)" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="1" data-equation="sin\alpha"><span></span><span></span></span>
正弦函数的图像和性质
y=sinx在[2k<span class="equation-text" data-index="0" data-equation="π" contenteditable="false"><span></span><span></span></span>-<span class="equation-text" data-index="1" data-equation="π" contenteditable="false"><span></span><span></span></span>/2,2k<span class="equation-text" data-index="2" data-equation="π" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="3" data-equation="π" contenteditable="false"><span></span><span></span></span>/2],k∈Z,上是增函数;在[2k<span class="equation-text" data-index="4" data-equation="π" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="5" data-equation="π" contenteditable="false"><span></span><span></span></span>/2,2k<span class="equation-text" data-index="6" data-equation="π" contenteditable="false"><span></span><span></span></span>+3<span class="equation-text" contenteditable="false" data-index="7" data-equation="π"><span></span><span></span></span>/2],k∈Z,上是减函数;三角函数y=sinx,它的定义域为全体实数,值域为[-1,1]
余弦函数的图像和性质
y=cosx在[2k<span class="equation-text" data-index="0" data-equation="π" contenteditable="false"><span></span><span></span></span>,2k<span class="equation-text" data-index="1" data-equation="π" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="2" data-equation="π" contenteditable="false"><span></span><span></span></span>],k∈Z,上是减函数;在[2k<span class="equation-text" data-index="3" data-equation="π" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="4" data-equation="π" contenteditable="false"><span></span><span></span></span>,2k<span class="equation-text" data-index="5" data-equation="π" contenteditable="false"><span></span><span></span></span>+2<span class="equation-text" data-index="6" data-equation="π" contenteditable="false"><span></span><span></span></span>],k∈Z,上是增函数;余弦函数的定义域是整个实数集,值域是[-1,1];余弦函数是周期函数,其最小正周期为2<span class="equation-text" contenteditable="false" data-index="7" data-equation="π"><span></span><span></span></span>。
你需要的知识储备
弧长公式
L=n*<span class="equation-text" contenteditable="false" data-index="0" data-equation="π"><span></span><span></span></span>*r/180°,L=α×r(n是圆心角度数,r是半径,L是圆心角弧长,α是圆心角度数)
弧长与角的换算
1°=<span class="equation-text" data-index="0" data-equation="π" contenteditable="false"><span></span><span></span></span>/180°,1rad=180°/π,一周是360度,也是2<span class="equation-text" data-index="1" data-equation="π" contenteditable="false"><span></span><span></span></span>弧度,即360°=2<span class="equation-text" contenteditable="false" data-index="2" data-equation="π"><span></span><span></span></span>。
0 条评论
下一页