一元二次函数、方程和不等式
2023-10-27 15:49:14 13 举报
AI智能生成
一元二次不等式,是指含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式。它的一般形式是 ax²+bx+c>0 、ax²+bx+c≠0、ax²+bx+c<0(a不等于0)。
作者其他创作
大纲/内容
等式性质与不等式性质
比较两个实数的大小
作差法
a>b<span class="equation-text" data-index="0" data-equation="\Leftrightarrow" contenteditable="false"><span></span><span></span></span>a-b>0;a=b<span class="equation-text" data-index="1" data-equation="\Leftrightarrow" contenteditable="false"><span></span><span></span></span>a-b=0;a<b<span class="equation-text" contenteditable="false" data-index="2" data-equation="\Leftrightarrow"><span></span><span></span></span>a-b<0
作商法
<span class="equation-text" data-index="0" data-equation="\frac{a}{b}" contenteditable="false"><span></span><span></span></span>>1<span class="equation-text" data-index="1" data-equation="\Leftrightarrow" contenteditable="false"><span></span><span></span></span>a>b;<span class="equation-text" data-index="2" data-equation="\frac{a}{b}" contenteditable="false"><span></span><span></span></span>=1<span class="equation-text" data-index="3" data-equation="\Leftrightarrow" contenteditable="false"><span></span><span></span></span>a=b;<span class="equation-text" contenteditable="false" data-index="4" data-equation="\frac{a}{b}"><span></span><span></span></span><1<span class="equation-text" data-index="5" data-equation="\Leftrightarrow" contenteditable="false"><span></span><span></span></span>a<b
比较两个代数式的大小
作差
变形
判断差的符号
作出结论
等式的性质
对称性:a=b<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Leftrightarrow"><span></span><span></span></span>b=a
传递性:a=b,b=c<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Rightarrow"><span></span><span></span></span>a=c
可加性:a=b<span class="equation-text" data-index="0" data-equation="\Leftrightarrow" contenteditable="false"><span></span><span></span></span>a<span class="equation-text" data-index="1" data-equation="\pm" contenteditable="false"><span></span><span></span></span>c=b<span class="equation-text" contenteditable="false" data-index="2" data-equation="\pm"><span></span><span></span></span>c
可乘性:a=b<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Rightarrow"><span></span><span></span></span>ac=bc
可除性:a=b,c≠0⇒<span class="equation-text" data-index="0" data-equation="\frac{a}{c}" contenteditable="false"><span></span><span></span></span>=<span class="equation-text" contenteditable="false" data-index="1" data-equation="\frac{b}{c}"><span></span><span></span></span>
不等式的性质
对称性:a>b<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Leftrightarrow"><span></span><span></span></span>b<a
传递性:a>b,b>c<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Rightarrow"><span></span><span></span></span>a>c
可加性:a>b<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Rightarrow"><span></span><span></span></span>a+c>b+c
可乘性:a>b,c>0<span class="equation-text" data-index="0" data-equation="\Rightarrow" contenteditable="false"><span></span><span></span></span>ac>bc;a>b,c<0<span class="equation-text" contenteditable="false" data-index="1" data-equation="\Rightarrow"><span></span><span></span></span>ac<bc
同向可加性:a>b,c>d<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Rightarrow"><span></span><span></span></span>a+c>b+d
同向可乘性:a>b>0,c>d>0<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Rightarrow"><span></span><span></span></span>ac>bd
可乘方性:a>b>0<span class="equation-text" data-index="0" data-equation="\Rightarrow" contenteditable="false"><span></span><span></span></span><span class="equation-text" data-index="1" data-equation="a^n" contenteditable="false"><span></span><span></span></span>><span class="equation-text" contenteditable="false" data-index="2" data-equation="b^n"><span></span><span></span></span>(nN,n>1)
基本不等式
重要不等式
若a,b<span class="equation-text" contenteditable="false" data-index="0" data-equation="\in"><span></span><span></span></span>R,则<span class="equation-text" data-index="1" data-equation="a^2" contenteditable="false"><span></span><span></span></span>+<span class="equation-text" data-index="2" data-equation="b^2" contenteditable="false"><span></span><span></span></span><span class="equation-text" data-index="3" data-equation="\geq" contenteditable="false"><span></span><span></span></span>2ab,当且仅当a=b时等号成立
基本不等式
若a>0,b>0,即<span class="equation-text" data-index="0" data-equation="\frac{a+b}{2}" contenteditable="false"><span></span><span></span></span><span class="equation-text" data-index="1" data-equation="\geq" contenteditable="false"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="\sqrt{ab}"><span></span><span></span></span>,当且仅当a=b时等号成立
算数平均数与几何平均数
平方平均数≥算数平均数≥几何平均数,<span class="equation-text" data-index="0" data-equation="\sqrt{(a^2+b^2)/2}" contenteditable="false"><span></span><span></span></span>≥<span class="equation-text" data-index="1" data-equation="\frac{a+b}{2}" contenteditable="false"><span></span><span></span></span>≥<span class="equation-text" contenteditable="false" data-index="2" data-equation="\sqrt{ab}"><span></span><span></span></span>,当且仅当a=b时等号成立
最值定理
如果积xy等于定值P,那么当x=y时,和x+y有最小值2<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sqrt{P}"><span></span><span></span></span>
如果积xy等于定值S,那么当x=y时,积xy有最大值<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{4}S^2"><span></span><span></span></span>
利用基本不等式求最大(小)值
积定和最小,和定积最大
应用基本不等式求最值需满足”一正二定三相等“
两数都是正数(两数都为负数时可提取负号)
必须有定值(有时需配凑、拆分凑出定值)
两数能够相等
构造定值条件的通常技巧
加项变换
拆项变换
统一换元
平方后利用基本不等式
二次函数与一元二次方程、不等式
一元二次不等式概念
我们把只含有一个未知数,并且未知数的最高次数是2的不等式,例如a<span class="equation-text" data-index="0" data-equation="x^2" contenteditable="false"><span></span><span></span></span>+b<span class="equation-text" data-index="1" data-equation="x" contenteditable="false"><span></span><span></span></span>+c<span class="equation-text" contenteditable="false" data-index="2" data-equation="\geq"><span></span><span></span></span>0(其中a,b,c均为常数、a≠0),叫做一元二次不等式
二次函数的零点
一般地,对于二次函数y=a<span class="equation-text" data-index="0" data-equation="x^2" contenteditable="false"><span></span><span></span></span>+b<span class="equation-text" data-index="1" data-equation="x" contenteditable="false"><span></span><span></span></span>+c,我们把使a<span class="equation-text" data-index="2" data-equation="x^2" contenteditable="false"><span></span><span></span></span>+b<span class="equation-text" data-index="3" data-equation="x" contenteditable="false"><span></span><span></span></span>+c=0的实数<span class="equation-text" data-index="4" data-equation="x" contenteditable="false"><span></span><span></span></span>叫做二次函数a<span class="equation-text" data-index="5" data-equation="x^2" contenteditable="false"><span></span><span></span></span>+b<span class="equation-text" contenteditable="false" data-index="6" data-equation="x"><span></span><span></span></span>+c的零点
二次函数与一元二次方程、不等式的解的对应关系
一元二次方程的解法步骤
将不等式化为右边为零,左边为二次项系数大于零的不等式a<span class="equation-text" data-index="0" data-equation="x^2" contenteditable="false"><span></span><span></span></span>+b<span class="equation-text" data-index="1" data-equation="x" contenteditable="false"><span></span><span></span></span>+c>0(a>0)或a<span class="equation-text" data-index="2" data-equation="x^2" contenteditable="false"><span></span><span></span></span>+b<span class="equation-text" contenteditable="false" data-index="3" data-equation="x"><span></span><span></span></span>+c<0(a>0)
求出相应的一元二次方程的根
利用二次函数的图像与轴的交点确定一元二次不等式的解集
0 条评论
下一页