《高等数学》读书笔记
2021-08-16 09:45:01 0 举报
AI智能生成
数学二考研高数部分知识框架
作者其他创作
大纲/内容
第1讲 函数极限与连续
第2讲 数列极限
第3讲 一元函数微分学的概念
第4讲 一元函数微分学的计算
一、基本求导公式
二、符号写法
三、复合函数求导
四、隐函数求导
设函数<span class="equation-text" data-index="0" data-equation="y=y(x)" contenteditable="false"><span></span><span></span></span>是由方程<span class="equation-text" data-index="1" data-equation="F(x,y)=0" contenteditable="false"><span></span><span></span></span>确定的可导函数,则<br>①方程<span class="equation-text" data-index="2" data-equation="F(x,y)=0" contenteditable="false"><span></span><span></span></span>两边对自变量<span class="equation-text" data-index="3" data-equation="x" contenteditable="false"><span></span><span></span></span>求导,注意<span class="equation-text" data-index="4" data-equation="y=y(x)" contenteditable="false"><span></span><span></span></span>,即将<span class="equation-text" data-index="5" data-equation="y" contenteditable="false"><span></span><span></span></span>看作中间变量,得到一个关于<span class="equation-text" data-index="6" data-equation="y^\prime" contenteditable="false"><span></span><span></span></span>的方程<br>②解该方程便可求出<span class="equation-text" contenteditable="false" data-index="7" data-equation="y^\prime"><span></span><span></span></span>
例4.5
五、反函数求导
六、分段函数求导(含绝对值)
七、多项乘除、开方、乘方(对数求导法)
八、幂指函数求导法
九、参数方程确定的函数求导
十、高阶导数
第5讲 一元函数微分学的应用(一)<br>——几何应用<br>
一、研究对象
1."祖孙三代"
2.分段函数(含绝对值)
3.参数方程
4.隐函数F(x,y)=0
二、研究内容
1.切线、法线、截距
2.极值、单调性
3.拐点、凹凸性
4.渐近线
<b>1)铅锤渐近线</b><br>若<span class="equation-text" data-index="0" data-equation="\lim_{x\to x_0^+}f(x)=\infin(或\lim_{x\to x_0^-}f(x)=\infin)" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" contenteditable="false" data-index="1" data-equation="x=x_0"><span></span><span></span></span>(一般为函数的无定义点)为一条铅锤渐近线
<b><span class="equation-temp"></span>2)水平渐近线</b><br>若<span class="equation-text" data-index="0" data-equation="\lim_{x\to +\infin}f(x)=y_1" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="1" data-equation="y=y_1" contenteditable="false"><span></span><span></span></span>为一条水平渐近线;若<span class="equation-text" data-index="2" data-equation="\lim_{x\to -\infin}f(x)=y_2" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="3" data-equation="y=y_2" contenteditable="false"><span></span><span></span></span>为一条水平渐近线;<br>若<span class="equation-text" data-index="4" data-equation="\lim_{x\to +\infin}f(x)=\lim_{x\to -\infin}f(x)=y_0" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" contenteditable="false" data-index="5" data-equation="y=y_0"><span></span><span></span></span>为一条水平渐进线
<b>3)斜渐近线</b><br>若<span class="equation-text" data-index="0" data-equation="\lim_{x\to +\infin}\frac{f(x)}{x}=k_1,\lim_{x\to +\infin}[f(x)-k_1x]=b_1" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="1" data-equation="y=k_1x+b_1" contenteditable="false"><span></span><span></span></span>是曲线<span class="equation-text" contenteditable="false" data-index="2" data-equation="y=f(x)"><span></span><span></span></span>的一条斜渐进线;<br>若<span class="equation-text" data-index="3" data-equation="\lim_{x\to -\infin}\frac{f(x)}{x}=k_2,\lim_{x\to -\infin}[f(x)-k_2x]=b_2" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="4" data-equation="y=k_2x+b_2" contenteditable="false"><span></span><span></span></span>是曲线<span class="equation-text" data-index="5" data-equation="y=f(x)" contenteditable="false"><span></span><span></span></span>的一条斜渐进线;<br>若<span class="equation-text" data-index="6" data-equation="\lim_{x\to \infin}\frac{f(x)}{x}=k,\lim_{x\to \infin}[f(x)-kx]=b" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="7" data-equation="y=kx+b" contenteditable="false"><span></span><span></span></span>是曲线<span class="equation-text" data-index="8" data-equation="y=f(x)" contenteditable="false"><span></span><span></span></span>的一条斜渐进线;<br>
例5.17、例5.18
5.最值(值域)
6.曲率与曲率半径
7.相关变化率<br>
第6讲 一元函数微分学的应用(二)<br>——中值定理、微分等式与微分不等式
中值定理
十大定理<br>
<b>定理1 有界与最值定理:</b><br>f(x)在[a,b]上连续,m≤f(x)≤M<br>
<b>定理2</b> <b>介值定理:</b><br>f(x)在[a,b]上连续,当m≤<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mu"><span></span><span></span></span>≤M时,<span class="equation-text" data-index="1" data-equation="\exists\xi\in[a,b]" contenteditable="false"><span></span><span></span></span>,使得<span class="equation-text" data-index="2" data-equation="f(\xi)=\mu" contenteditable="false"><span></span><span></span></span>
<b>定理3</b> <b>平均值定理:</b><br>当<span class="equation-text" data-index="0" data-equation="a<x_1<x_2<…<x_n<b" contenteditable="false"><span></span><span></span></span>时,<span class="equation-text" data-index="1" data-equation="\exist\xi\in[x_1,x_n]" contenteditable="false"><span></span><span></span></span>使得<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="f(\xi)=\frac{f(x_1)+f(x_2)+…+f(x_n)}{n}"><span></span><span></span></span><br>
<b>定理4 零点定理:</b><br>当f(a)·f(b)<0时,<span class="equation-text" data-index="0" data-equation="\exist\xi\in(a,b)" contenteditable="false"><span></span><span></span></span>使得<span class="equation-text" contenteditable="false" data-index="1" data-equation="f(\xi)=0"><span></span><span></span></span>
<b>※定理5 费马定理(区分度最高):</b><br>若f(x)在点<span class="equation-text" data-index="0" data-equation="x_0" contenteditable="false"><span></span><span></span></span>处满足①可导,②取极值,则<span class="equation-text" contenteditable="false" data-index="1" data-equation="f^\prime(x_0)=0"><span></span><span></span></span>
<b>定理6 罗尔定理:</b><br>若f(x)满足①[a,b]上连续,②(a,b)内可导,③f(a)=f(b),则<span class="equation-text" data-index="0" data-equation="\exists\xi\in(a,b)" contenteditable="false"><span></span><span></span></span>,使得<span class="equation-text" contenteditable="false" data-index="1" data-equation="f^\prime(\xi)=0"><span></span><span></span></span>
<b>定理7 拉格朗日中值定理(无条件成立):<br></b>若f(x)满足①[a,b]上连续,②(a,b)内可导,则<span class="equation-text" data-index="0" data-equation="\exist\xi\in(a,b)" contenteditable="false"><span></span><span></span></span>使得<br><span class="equation-text" data-index="1" data-equation="f(b)-f(a)=f^\prime(\xi)(b-a)" contenteditable="false"><span></span><span></span></span>,或者写成<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="f^\prime(\xi)=\frac{f(b)-f(a)}{b-a}"><span></span><span></span></span><br>
<b>定理8 柯西中值定理(2020数二考过大题):<br></b>若f(x)(抽象),g(x)(具体)满足①[a,b]上连续,②(a,b)内可导,③<span class="equation-text" data-index="0" data-equation="g^\prime(x)≠0" contenteditable="false"><span></span><span></span></span><br>则<span class="equation-text" data-index="1" data-equation="\exists\xi\in(a,b)" contenteditable="false"><span></span><span></span></span>使得<span class="equation-text" contenteditable="false" data-index="2" data-equation="\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^\prime(\xi)}{g^\prime(\xi)}"><span></span><span></span></span>
<b>定理9 泰勒公式:</b><br>
<b>带拉格朗日余项的n阶泰勒公式:<br></b>设f(x)在点<span class="equation-text" data-index="0" data-equation="x_0" contenteditable="false"><span></span><span></span></span>的某个邻域内n+1阶导数存在,则对该邻域内的任一点x,有<b><br></b><span class="equation-text" data-index="1" data-equation="f(x)=f(x_0)+f^\prime(x_0)(x-x_0)+…+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\frac{1}{(n+1)!}f^{(n+1)}(\xi)(x-x_0)^{n+1}" contenteditable="false"><span></span><span></span></span><br>其中<span class="equation-text" data-index="2" data-equation="\xi" contenteditable="false"><span></span><span></span></span>介于<span class="equation-text" contenteditable="false" data-index="3" data-equation="x,x_0"><span></span><span></span></span>之间
<b>带佩亚诺余项的n阶泰勒公式:<br></b>设f(x)在点<span class="equation-text" data-index="0" data-equation="x_0" contenteditable="false"><span></span><span></span></span>处n阶可导,则存在<span class="equation-text" contenteditable="false" data-index="1" data-equation="x_0"><span></span><span></span></span>的一个邻域,对该邻域内的任一点x,有<b><br></b><span class="equation-text" data-index="2" data-equation="f(x)=f(x_0)+f^\prime(x_0)(x-x_0)+\frac{1}{2!}f^{\prime\prime}(x_0)(x-x_0)^2+…+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n)" contenteditable="false"><span></span><span></span></span><br>
<b>定理10 积分中值定理:<br></b>若f(x)在[a,b]上连续,则<span class="equation-text" data-index="0" data-equation="\exist\xi\in[a,b]" contenteditable="false"><span></span><span></span></span>使得<br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\int_{a}^{b} f(x)\ \mathrm{d}x=f(\xi)(b-a)"><span></span><span></span></span><br>
<b>辅助函数:</b><br>(除2016年都是简单辅助函数f(x))
<b>①乘积求导公式</b><span class="equation-text" contenteditable="false" data-index="0" data-equation="(uv)^\prime=u^\prime v+uv^\prime"><span></span><span></span></span><b>的逆用</b><br>见到<span class="equation-text" data-index="1" data-equation="f(x)f^\prime(x)==>令F(x)=f^2(x)" contenteditable="false"><span></span><span></span></span><br>见到<span class="equation-text" data-index="2" data-equation="[f^\prime(x)]^2+f(x)f^{\prime\prime}(x)==>令F(x)=f(x)f^\prime(x)" contenteditable="false"><span></span><span></span></span><br>见到<span class="equation-text" data-index="3" data-equation="f^\prime(x)+f(x)\phi^\prime(x)==>令F(x)=f(x)e^{\phi(x)}" contenteditable="false"><span></span><span></span></span><br>
例6.2<br>习题6.5
<b>②商的求导公式</b><span class="equation-text" data-index="0" data-equation="(\frac{u}{v})^\prime=\frac{u^\prime v-uv^\prime}{v^2}" contenteditable="false"><span></span><span></span></span><b>的逆用</b><br>a.见到<span class="equation-text" data-index="1" data-equation="f^\prime(x)x-f(x),x≠0==>F(x)=\frac{f(x)}{x}" contenteditable="false"><span></span><span></span></span><br>b.见到<span class="equation-text" data-index="2" data-equation="f^{\prime\prime}(x)f(x)-[f^\prime(x)]^2,f(x)≠0==>F(x)=\frac{f^\prime(x)}{f(x)}" contenteditable="false"><span></span><span></span></span><br>c.<span class="equation-text" data-index="3" data-equation="[\ln f(x)]^\prime=\frac{f^\prime(x)}{f(x)}" contenteditable="false"><span></span><span></span></span>,故"b"为<span class="equation-text" contenteditable="false" data-index="4" data-equation="[\ln f(x)]^{\prime\prime}"><span></span><span></span></span>
例6.30
见到<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_a^bf(x)\ \mathrm{d}x==>F(x)=\int_a^xf(t)\ \mathrm{d}t"><span></span><span></span></span><br>
例6.5
题目中给出"F(x)"或"F(a)",可令F(x)做辅助函数
例6.15
微分等式问题<br>(方程的根、函数的零点)
理论依据
1.零点定理及其推广
<b>零点定理:</b><span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x)\{ _{f(a)f(b)<0}^{[a,b]上连续}"><span></span><span></span></span>,则f(x)=0在(a,b)内至少一个根
<b>推广的零点定理:</b><br>若f(x)在(a,b)内连续,<span class="equation-text" data-index="0" data-equation="\lim_{x\to a^+}f(x)=\alpha" contenteditable="false"><span></span><span></span></span>,<span class="equation-text" data-index="1" data-equation="\lim_{x\to b^-}f(x)=\beta" contenteditable="false"><span></span><span></span></span>,且<span class="equation-text" contenteditable="false" data-index="2" data-equation="\alpha·\beta<0"><span></span><span></span></span><br>则f(x)=0在(a,b)内至少一个根
2.用导数工具研究函数性态<br>
3.<b>罗尔定理的推论</b><br>若 <span class="equation-text" data-index="0" data-equation="f^n(x)=0" contenteditable="false"><span></span><span></span></span>至多有k个根,则<span class="equation-text" contenteditable="false" data-index="1" data-equation="f(x)= 0"><span></span><span></span></span>至多有k+n个根<br>
4.实系数奇次方程<span class="equation-text" contenteditable="false" data-index="0" data-equation="x^{2n+1}+a_1x^{2n}+…+a_{2n}x十a_{2n+1}=0"><span></span><span></span></span>至少有一个实根
考法
1.证明恒等式<br>
例6.19
<b>※2.函数的零点个数(方程根的个数、曲线交点的个数)</b><br>
例6.20
导数中不含参数
例6.21、习题6.7<br>
导数中含参数
例6.22<br>
3.方程(列)问题(见第2讲)<br>
例2.15
4.区间(列)问题(见第2讲).
例2.16
微分不等式问题
单调性
例6.23、例6.24、例6.33<br>习题6.9、习题6.10<br>
最值<br>
例6.25、例6.27
凹凸性
例6.30、习题6.10
拉格朗日中值定理
例6.26、例6.28、例6.31、习题6.10
柯西中值定理
例6.7
带拉格朗日余项的泰勒公式
例6.29、例6.30、例6.32<br>
能推出<span class="equation-text" data-index="0" data-equation="F^{\prime\prime}(x)" contenteditable="false"><span></span><span></span></span>与0的关系,在适当的<span class="equation-text" data-index="1" data-equation="x=x_0" contenteditable="false"><span></span><span></span></span>处展开<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="F(x)=F(x_0)+F^\prime(x_0)(x-x_0)+\frac{1}{2}F^{\prime\prime}(\xi)(x-x_0)^2(\xi介于x,x_0间)"><span></span><span></span></span><br>
第7讲 一元函数微分学的应用(三)<br>——物理应用与经济应用
物理应用(数一、数二)
以A对B的变化率为核心,写出<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{dA}{dB}"><span></span><span></span></span>的表达式
经济应用(数三)
第8讲 一元函数积分学的概念与性质<br>
"祖孙三代"的奇偶性、周期性<br>
<b>奇偶性:<br></b>①<span class="equation-text" data-index="0" data-equation="f(x)奇函数\to f^\prime(x)偶函数;" contenteditable="false"><span></span><span></span></span><span class="equation-text" data-index="1" data-equation="f(x)偶函数\to f^\prime(x)奇函数;" contenteditable="false"><span></span><span></span></span><br>②<span class="equation-text" contenteditable="false" data-index="2" data-equation="f(x)奇函数\to \int_a^xf(t)\ \mathrm{d}t偶函数;f(x)偶函数\to\{_{\int_a^xf(t)\ \mathrm{d}t 不确定(a≠0)}^{\int_0^xf(t)\ \mathrm{d}t为奇函数}"><span></span><span></span></span>
例8.1、例8.4
<b>周期性:<br></b>①<span class="equation-text" data-index="0" data-equation="\int_0^Tf(x)\ \mathrm{d}x=\int_a^{a+T}f(x)\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span><span class="equation-text" data-index="1" data-equation="\leftarrow f(x)周期为T\to f^\prime(x)周期为T" contenteditable="false"><span></span><span></span></span><br>②<span class="equation-text" contenteditable="false" data-index="2" data-equation="\{_{\int_0^Tf(x)\ \mathrm{d}x=0}^{f(x)周期为T}\Rightarrow \int_a^xf(t)\ \mathrm{d}t周期为T"><span></span><span></span></span>
例8.2、例8.3
积分比大小
<b>几何意义</b><br>①<span class="equation-text" data-index="0" data-equation="\int_a^bf(x) \ \mathrm{d}x=F(b)-F(a)" contenteditable="false"><span></span><span></span></span><br><b>※②</b><span class="equation-text" data-index="1" data-equation="\int_{x_0}^x f^\prime(t) \ \mathrm{d}t=f(x)-F(x_0)" contenteditable="false"><span></span><span></span></span><b>(注意物理应用<span class="equation-text" data-index="2" data-equation="f^\prime" contenteditable="false"><span></span><span></span></span>为速度则<span class="equation-text" contenteditable="false" data-index="3" data-equation="f"><span></span><span></span></span>为位移)</b><br>③<span class="equation-text" data-index="4" data-equation="\int_{-a}^{a} f(x) \ \mathrm{d}x=\{_{0,f(x)奇函数}^{2\int_{0}^{a} f(x)\ \mathrm{d}x,f(x)偶函数}" contenteditable="false"><span></span><span></span></span>
例8.4、例8.5<br>习题8.1
<b>保号性</b><br>①推出正负,如|x|≥0;当<span class="equation-text" data-index="0" data-equation="x\in[\pi,2\pi]" contenteditable="false"><span></span><span></span></span>时,<span class="equation-text" data-index="1" data-equation="\sin x≤0" contenteditable="false"><span></span><span></span></span><br>②作差,<span class="equation-text" data-index="2" data-equation="I_1-I_2" contenteditable="false"><span></span><span></span></span>,再换元(常用<span class="equation-text" data-index="3" data-equation="x=\pi\pm t,x=\frac{\pi}{2}\pm t" contenteditable="false"><span></span><span></span></span>)<span class="equation-text" contenteditable="false" data-index="4" data-equation="\to"><span></span><span></span></span>8个诱导公式<br>
例8.6、例8.7
定积分定义<br>
基本型(能凑成<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{i}{n}"><span></span><span></span></span>)<br>
若数列通项中以下形式<br>①<span class="equation-text" data-index="0" data-equation="an+bi=n(a+b\frac{i}{n})" contenteditable="false"><span></span><span></span></span>; ②<span class="equation-text" data-index="1" data-equation="n^2+i^2=n^2[1+(\frac{i}{n})^2]" contenteditable="false"><span></span><span></span></span>;<br>③<span class="equation-text" data-index="2" data-equation="n^2+ni=n^2(1+\frac{i}{n})" contenteditable="false"><span></span><span></span></span>; ④<span class="equation-text" data-index="3" data-equation="\frac{i}{n}" contenteditable="false"><span></span><span></span></span>;<br>可直接写定积分定义(<span class="equation-text" data-index="4" data-equation="\frac{1}{n}\to \mathrm{d}x" contenteditable="false"><span></span><span></span></span>,<span class="equation-text" contenteditable="false" data-index="5" data-equation="\frac{i}{n} \to x"><span></span><span></span></span>)<br><span class="equation-text" data-index="6" data-equation="\lim_{n \to \infty}\sum_{i=1}^{n}f(0+\frac{1-0}{n}i)\frac{1-0}{n}=\int_0^1f(x)\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span>,或<br><span class="equation-text" data-index="7" data-equation="\lim_{n \to \infty}\sum_{i=0}^{n-1}f(0+\frac{1-0}{n}i)\frac{1-0}{n}=\int_0^1f(x)\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span><br>
例8.8、例8.9<br>习题8.2
放缩型(凑不成<span class="equation-text" data-index="0" data-equation="\frac{i}{n}" contenteditable="false"><span></span><span></span></span>)<br>
<b>夹逼准则:</b><br>如通项中含<span class="equation-text" data-index="0" data-equation="n^2+i" contenteditable="false"><span></span><span></span></span> ,则凑不成<span class="equation-text" contenteditable="false" data-index="1" data-equation="\frac{i}{n}"><span></span><span></span></span>,考虑放缩用夹逼准则(见第2讲)
<b>放缩后再凑</b><span class="equation-text" data-index="0" data-equation="\frac{i}{n}" contenteditable="false"><span></span><span></span></span><b>:</b><br>如通项中含<span class="equation-text" data-index="1" data-equation="\frac{i^2+1}{n^2}" style="" contenteditable="false"><span></span></span> ,虽凑不成<span class="equation-text" data-index="2" data-equation="\frac{i}{n}" style="font-style: italic;" contenteditable="false"><span></span><span></span></span>,但放缩:<span class="equation-text" data-index="3" data-equation="(\frac{i}{n})^2<\frac{i^2+1}{n^2}<(\frac{i+1}{n})^2" style="" contenteditable="false"><span></span><span></span></span>,则可凑成<span class="equation-text" data-index="4" data-equation="\frac{i}{n}" style="font-weight: bold;" contenteditable="false"><span></span><span></span></span>
习题8.3
变量型<br>
若通项中含<span class="equation-text" data-index="0" data-equation="\frac{x}{n}i" contenteditable="false"><span></span><span></span></span>,则考虑以下式子:<br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\lim _{n\to\infin}\sum_{i=1}^{n}f(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_{0}^{x}f(t)\ \mathrm{d}t"><span></span><span></span></span><br>
例8.10
<b>※反常积分的判敛<br>(比阶的问题)</b>
概念
<b>无穷区间上的反常积分</b>:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_a^{+\infin} f(x)\ \mathrm{d}x"><span></span><span></span></span>
<b>无界函数的反常积分</b>:<br><span class="equation-text" data-index="0" data-equation="\int_{a}^{b} f(x) \ \mathrm{d}x" contenteditable="false"><span></span><span></span></span>,且<span class="equation-text" contenteditable="false" data-index="1" data-equation="\lim_{x\to a^+}f(x)=\infin"><span></span><span></span></span>,即a为<b>瑕点</b>
<b>奇点</b>:<span class="equation-text" contenteditable="false" data-index="0" data-equation="-\infin、+\infin、a"><span></span><span></span></span>统称为奇点
判别
判别时要求每个积分有且仅有一个<b>奇点</b>
尺度
例8.11、例8.12、例8.13、例8.14、<font color="#b71c1c">例8.15</font><br>习题8.4
①<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{0}^{c}\frac{1}{x^{p}} \ \mathrm{d}x\{_{p≥1时,发散}^{0<p<1时,收敛}"><span></span><span></span></span>
②<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{c}^{+\infin}\frac{1}{x^{p}} \ \mathrm{d}x\{_{p≤1时,发散}^{p>1时,收敛}"><span></span><span></span></span>
③广义P积分:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{c}^{+\infin}\frac{1}{x\ln^px} \ \mathrm{d}x\{_{p≤1时,发散}^{p>1时,收敛}"><span></span><span></span></span>
<font color="#b71c1c">例8.13、例8.14</font><br>
④<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{1}^{+\infin}\frac{1}{x^a\ln^bx} \ \mathrm{d}x收敛\iff a>1且0<b<1"><span></span><span></span></span>
习题8.4
第9讲 一元函数积分学的计算<br>
基本积分公式
④<span class="equation-text" data-index="0" data-equation="\int \sin x\ \mathrm{d}x=-\cos x+C;\int\cos x \ \mathrm{d}x=\sin x +C;" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="\int \tan x\ \mathrm{d}x=-\ln|\cos x|+C;\int\cot x\ \mathrm{d}x=ln|\sin x|+C;" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="2" data-equation="\int\frac{1}{\cos x}\ \mathrm{d}x=\int \sec x\ \mathrm{d}x=ln|\sec x+\tan x|+C;" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="3" data-equation="\int\frac{1}{\sin x}\ \mathrm{d}x=\int \csc x\ \mathrm{d}x=ln|\csc x-\cot x|+C;" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="4" data-equation="\int\sec^2x \ \mathrm{d}x=\tan x+C;\int\csc^2x\ \mathrm{d}x=-\cot x+C;" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="5" data-equation="\int\sec x\tan x \ \mathrm{d}x=\sec x+C;\int\csc x\cot x\ \mathrm{d}x=-\csc x +C;"><span></span><span></span></span><br>
⑤<span class="equation-text" data-index="0" data-equation="\int\frac{1}{1+x^2} \ \mathrm{d}x=\arctan x+C" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\Rightarrow\int\frac{1}{a^2+x^2} \ \mathrm{d}x=\frac{1}{a}\arctan \frac{x}{a}+C(a>0)"><span></span><span></span></span><br>
⑥<span class="equation-text" data-index="0" data-equation="\int \frac{1}{\sqrt{1-x^2}}\ \mathrm{d}x=\arcsin x+C" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\Rightarrow \int \frac{1}{\sqrt{a^2-x^2}}\ \mathrm{d}x=\arcsin \frac{x}{a}+C(a>0)"><span></span><span></span></span><br>
⑦<span class="equation-text" data-index="0" data-equation="\int \frac{1}{\sqrt{x^2+a^2}} \ \mathrm{d}x=\ln(x+\sqrt{x^2+a^2})+C(常见a=1)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\Rightarrow\int \frac{1}{\sqrt{x^2-a^2}} \ \mathrm{d}x=\ln|x+\sqrt{x^2-a^2}|+C(|x|>|a|)"><span></span><span></span></span><br>
⑧<span class="equation-text" data-index="0" data-equation="\int\frac{1}{x^2-a^2} \ \mathrm{d}x=\frac{1}{2a}\ln |\frac{x-a}{x+a}|+C" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\Rightarrow\int\frac{1}{a^2-x^2} \ \mathrm{d}x=\frac{1}{2a}\ln |\frac{x+a}{x-a}|+C"><span></span><span></span></span><br>
<b>※⑨</b><span class="equation-text" contenteditable="false" data-index="0" data-equation="\int \sqrt{a^2-x^2} \ \mathrm{d}x=\frac{a^2}{2}\arcsin \frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C(a>|x|≥0)"><span></span><span></span></span>
⑩<span class="equation-text" data-index="0" data-equation="\int \sin^2x \ \mathrm{d}x=\frac{x}{2}-\frac{\sin 2x}{4}+C(\sin^2x=\frac{1-\cos 2x}{2})" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="\int cos^2x \ \mathrm{d}x=\frac{x}{2}+\frac{\sin 2x}{4}+C(\cos^2x=\frac{1+\cos 2x}{2})" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="2" data-equation="\int \tan^2x \ \mathrm{d}x=\tan x -x+C(\tan^2 x=\sec^2 x-1)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="3" data-equation="\int \cot^2x \ \mathrm{d}x=-\cot x -x+C(\cot^2 x=\csc^2 x-1)"><span></span><span></span></span><br>
例9.3
不定积分的计算
凑微分法
思想:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\int f[g(x)]g^\prime(x) \ \mathrm{d}x=\int f[g(x)] \ \mathrm{d}[g(x)]=\int f(u) \ \mathrm{d}u"><span></span><span></span></span><br>
简单情形:<span class="equation-text" data-index="0" data-equation="\int f[g(x)]g^\prime(x) \ \mathrm{d}x=\int f[g(x)] \ \mathrm{d}[g(x)]" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="\Rightarrow"><span></span><span></span></span>常用的凑微分公式<br>
复杂情形:<span class="equation-text" data-index="0" data-equation="\int f(x)·g(x) \ \mathrm{d}x=\frac{1}{A}\int f·Ag \ \mathrm{d}x=\frac{1}{A}\int f(x) \ \mathrm{d}[f(x)]" contenteditable="false"><span></span><span></span></span><br>找<span class="equation-text" contenteditable="false" data-index="1" data-equation="f(x)\Rightarrow f^\prime(x)=Ag(x)"><span></span><span></span></span>
<b>※换元法</b>
<b>思想:</b>当被积函数不容易积分(比如含有根式,含有反三角函数)时,可以通过换元的方法从d后面拿出一部分放到前面来<br><span class="equation-text" data-index="0" data-equation="\int f(x)\ \mathrm{d}x_{====}^{x=g(u)}\int f[g(u)] \ \mathrm{d}[g(u)]=\int f[g(u)]g^\prime(u)\ \mathrm{d}u" contenteditable="false"><span></span><span></span></span><br>注:<span class="equation-text" contenteditable="false" data-index="1" data-equation="x=g(u)"><span></span><span></span></span>必须是单调可导函数,计算完后要用<span class="equation-text" data-index="2" data-equation="u=g^{-1}(x)" contenteditable="false"><span></span><span></span></span>回代
方法
<b>三角函数代换</b>——被积函数含有如下根式(a>0)<br>①<span class="equation-text" data-index="0" data-equation="\sqrt{a^2-x^2}\to x=a\sin t,|t|≤\frac{\pi}{2}" contenteditable="false"><span></span><span></span></span><br>②<span class="equation-text" data-index="1" data-equation="\sqrt{a^2+x^2}\to x=a\tan t,|t|≤\frac{\pi}{2}" contenteditable="false"><span></span><span></span></span><br>③<span class="equation-text" contenteditable="false" data-index="2" data-equation="\sqrt{x^2-a^2}\to x=a\sec t,\{^{若x>0,则0<t<\frac{\pi}{2} }_{若x<0,则\frac{\pi}{2}<t<\pi }"><span></span><span></span></span>
<b>恒等变形后作三角函数代换</b>——当被积函数中含有根式<span class="equation-text" data-index="0" data-equation="\sqrt{ax^2+bx+c}" contenteditable="false"><span></span><span></span></span>时,<br>可化为以下三种形式<span class="equation-text" contenteditable="false" data-index="1" data-equation="\sqrt{\phi^2(x)+k^2},\sqrt{\phi^2(x)-k^2},\sqrt{k^2-\phi^2(x)}"><span></span><span></span></span>,再作三角函数代换.
<b>根式代换</b>——当被积函数中含有根式<span class="equation-text" data-index="0" data-equation="\sqrt[n]{ax+b},\sqrt{\frac{ax+b}{cx+d}},\sqrt[]{ae^{bx}+c}" contenteditable="false"><span></span><span></span></span>等时<br>一般令根式<span class="equation-text" data-index="1" data-equation="\sqrt{*}=t" contenteditable="false"><span></span><span></span></span>(因为根式内难以凑成平方,根号无法去掉),<br>对既含有<span class="equation-text" data-index="2" data-equation="\sqrt[n]{ax+b}" contenteditable="false"><span></span><span></span></span>,也含有<span class="equation-text" data-index="3" data-equation="\sqrt[n]{ax+b}" contenteditable="false"><span></span><span></span></span>的函数,一般取m,n的最小公倍数<span class="equation-text" contenteditable="false" data-index="4" data-equation="l"><span></span><span></span></span>,令<span class="equation-text" data-index="5" data-equation="\sqrt[l]{ax+b}=t" contenteditable="false"><span></span><span></span></span>
<b>倒代换</b>——当被积函数分母的幂次比分子高两次及两次以上时,<br>可作倒代换,如令<span class="equation-text" contenteditable="false" data-index="0" data-equation="x=\frac{1}{t}"><span></span><span></span></span><br>
<b>复杂函数的直接代换</b>——当被积函数中含有<span class="equation-text" data-index="0" data-equation="a^x,e^x,\arcsin x,\arctan x" contenteditable="false"><span></span><span></span></span>等时,可考虑直接令复杂函数等于t<br>当<span class="equation-text" data-index="1" data-equation="\ln x,\arcsin x,\arctan x" contenteditable="false"><span></span><span></span></span>与<span class="equation-text" data-index="2" data-equation="P_n(x)" contenteditable="false"><span></span><span></span></span>(x的n次多项式)或<span class="equation-text" contenteditable="false" data-index="3" data-equation="e^{ax}"><span></span><span></span></span>做乘除时,优先考虑分部积分法
分部积分法
思想:<br><span class="equation-text" data-index="0" data-equation="\int u \ \mathrm{d}v=uv-\int v \ \mathrm{d}u" contenteditable="false"><span></span><span></span></span>,这个方法主要适用于求<span class="equation-text" data-index="1" data-equation="\int u \ \mathrm{d}v" contenteditable="false"><span></span><span></span></span>比较困难,而<span class="equation-text" contenteditable="false" data-index="2" data-equation="\int v \ \mathrm{d}u"><span></span><span></span></span>比较容易的情形
方法
<b>u,v选取原则:</b>反、对、幂、指、三<br>
推广公式 (表格法)
可能会创造出<b>积分再现</b>或者<b>积分抵消</b>的情形<br>
例9.6
有理函数的积分
例9.6、例9.7
定义:形如<span class="equation-text" data-index="0" data-equation="\int\frac{P_n(x)}{Q_m(x)}\ \mathrm{d}x(n<m) " contenteditable="false"><span></span><span></span></span>的积分称为有理函数的积分,其中<span class="equation-text" contenteditable="false" data-index="1" data-equation="P_n(x),Q_m(x)"><span></span><span></span></span>分别是x的n次多项式和m次多项式
思想:先将<span class="equation-text" data-index="0" data-equation="Q_m(x)" contenteditable="false"><span></span><span></span></span>因式分解,再把<span class="equation-text" contenteditable="false" data-index="1" data-equation="\frac{P_n(x)}{Q_m(x)}"><span></span><span></span></span>拆分成若干项最简有理分式之和
方法
①<span class="equation-text" data-index="0" data-equation="Q_m(x)" contenteditable="false"><span></span><span></span></span>的一次单因式<span class="equation-text" data-index="1" data-equation="(ax+b)" contenteditable="false"><span></span><span></span></span>产生一项<span class="equation-text" contenteditable="false" data-index="2" data-equation="\frac{A}{ax+b}"><span></span><span></span></span>
②<span class="equation-text" data-index="0" data-equation="Q_m(x)" contenteditable="false"><span></span><span></span></span>的k重一次因式<span class="equation-text" data-index="1" data-equation="(ax+b)^k" contenteditable="false"><span></span><span></span></span>产生k项,分别为<span class="equation-text" contenteditable="false" data-index="2" data-equation="\frac{A_1}{ax+b},\frac{A_2}{(ax+b)^2},...,\frac{A_k}{(ax+b)^k}"><span></span><span></span></span>
例9.7
③<span class="equation-text" data-index="0" data-equation="Q_m(x)" contenteditable="false"><span></span><span></span></span>的二次单因式<span class="equation-text" data-index="1" data-equation="px^2+qx+r" contenteditable="false"><span></span><span></span></span>产生一项<span class="equation-text" contenteditable="false" data-index="2" data-equation="\frac{Ax+B}{px^2+qx+r}"><span></span><span></span></span>
④<span class="equation-text" data-index="0" data-equation="Q_m(x)" contenteditable="false"><span></span><span></span></span>的k重二次因式<span class="equation-text" data-index="1" data-equation="(px^2+qx+r)^k" contenteditable="false"><span></span><span></span></span>产生k项,分别为<span class="equation-text" contenteditable="false" data-index="2" data-equation="\frac{A_1x+B_1}{px^2+qx+r},\frac{A_2x+B_2}{(px^2+qx+r)^2},...,\frac{A_kx+B_k}{(px^2+qx+r)^k}"><span></span><span></span></span>
定积分的计算
<b>1.区间再现公式——</b>(被积函数中出现三角函数<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Rightarrow"><span></span><span></span></span>考虑区间再现公式)<br>①<span class="equation-text" data-index="1" data-equation="\int_a^b f(x)\ \mathrm{d}x=\int_a^bf(a+b-x)\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span><br>②两边等式相加再除以2有: <span class="equation-text" data-index="2" data-equation="\int_a^b f(x)\ \mathrm{d}x=\frac{1}{2}\int_a^b[f(x)+f(a+b-x)]\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span><br>③令<span class="equation-text" data-index="3" data-equation="F(x)=f(x)+f(a+b-x)" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="4" data-equation="F(a+b-x)=f(a+b-x)+f(x)=F(x)" contenteditable="false"><span></span><span></span></span>,<br>故<span class="equation-text" data-index="5" data-equation="F(x)" contenteditable="false"><span></span><span></span></span>以<span class="equation-text" data-index="6" data-equation="x=\frac{a+b}{2}" contenteditable="false"><span></span><span></span></span>为对称轴,故又有<span class="equation-text" data-index="7" data-equation="\int_a^bf(x) \ \mathrm{d}x=\int_a^{\frac{a+b}{2}}[f(x)+f(a+b-x)]\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span>
例9.8、例9.9、例9.10
<b>2.华里士公式(点火公式)<br></b>
①<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_0^{\frac{\pi}{2}}\sin^nx\ \mathrm{d}x=\int_0^{\frac{\pi}{2}}\cos^nx\ \mathrm{d}x=\{_{\frac{n-1}{n}·\frac{n-3}{n-2}·...·\frac{1}{2}·\frac{\pi}{2},n为正偶数}^{\frac{n-1}{n}·\frac{n-3}{n-2}·...·\frac{2}{3}·1,n为正奇数}"><span></span><span></span></span>
②<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_0^\pi\sin^n x\ \mathrm{d}x=2\int_0^{\frac{\pi}{2}}\sin^n x\ \mathrm{d}x"><span></span><span></span></span><br>
③<span class="equation-text" data-index="0" data-equation="\int_0^\pi\cos^n x\ \mathrm{d}x=\{_{2\int_{_{_0}}^{\frac{\pi}{_2}} \cos^nx\ \mathrm{d}x,n为正偶数}^{^{0,n为正奇数}}" contenteditable="false"><span></span><span></span></span>
子主题
其他
①<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{-a}^{a}f(x)\ \mathrm{d}x=\int_0^a[f(x)+f(-x)]\ \mathrm{d}x(a>0)"><span></span><span></span></span><br>
例9.16
②(9)<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_0^\pi xf(sinx)\ \mathrm{d}x=\frac{\pi}{2}\int_0^\pi f(\sin x)\ \mathrm{d}x"><span></span><span></span></span>
例9.17
③(10)<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_0^\pi xf(\sin x)\ \mathrm{d}x=\pi\int_0^{\frac{\pi}{2}} f(\sin x) \ \mathrm{d}x"><span></span><span></span></span><br>
例9.18
<b>3.诱导公式</b><br>
<b>4.区间简化公式</b>
①将<span class="equation-text" data-index="0" data-equation="\int_a^b" contenteditable="false"><span></span><span></span></span>变为<span class="equation-text" contenteditable="false" data-index="1" data-equation="\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\Rightarrow"><span></span><span></span></span>令<span class="equation-text" data-index="2" data-equation="x-\frac{a+b}{2}=\frac{b-a}{2}\sin t" contenteditable="false"><span></span><span></span></span>,有<br><span class="equation-text" data-index="3" data-equation="\int_a^bf(x)\ \mathrm{d}x=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f(\frac{a+b}{2}+\frac{b-a}{2}\sin t)·\frac{b-a}{2}\cos t\ \mathrm{d}t" contenteditable="false"><span></span><span></span></span><br>
例9.22
②将<span class="equation-text" data-index="0" data-equation="\int_a^b" contenteditable="false"><span></span><span></span></span>变为<span class="equation-text" data-index="1" data-equation="\int_{0}^{1}\Rightarrow" contenteditable="false"><span></span><span></span></span>令<span class="equation-text" data-index="2" data-equation="x-a=(b-a)t" contenteditable="false"><span></span><span></span></span>,有<br><span class="equation-text" contenteditable="false" data-index="3" data-equation="\int_a^bf(x)\ \mathrm{d}x=\int_0^1(b-a)f[a+(b-a)t]\ \mathrm{d}x"><span></span><span></span></span><br>
例9.23
<b>5.对称性下的积分问题</b>
例9.24、例9.25
对于<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_a^b, 且b-a=2n"><span></span><span></span></span>型的积分,可利用对称性解决问题
<b>6.定积分分部积分法中的"升阶""降阶"问题</b>
例9.26、例9.27、例9.28
对其积分,谓之降阶;对其求导,谓之升阶<br>
<b>7.分段函数的定积分</b><br>
例9.29
变限积分的计算
<b>1.分段函数的变限积分</b><br>
例9.30、例9.31
2.直接求导型
例9.32、例9.33
Ⅰ)<span class="equation-text" data-index="0" data-equation="[\int_{a}^{\phi(x)}f(t)\ \mathrm{d}t]^\prime_x=f[\phi(x)]*\phi^\prime(x)" contenteditable="false"><span></span><span></span></span><br>Ⅱ)<span class="equation-text" contenteditable="false" data-index="1" data-equation="[\int_{\phi_{_1}(x)}^{\phi_{_2}(x)}f(t)\ \mathrm{d}t]^\prime_x=f[\phi_2(x)]*\phi^\prime_2(x)-f[\phi_1(x)]*\phi^\prime_1(x)"><span></span><span></span></span>
<b>3.换元求导型</b>
例9.34、例9.35
<b>4.拆分求导型</b>
例9.36、例9.37
被积函数中含有绝对值如<span class="equation-text" contenteditable="false" data-index="0" data-equation="|x-t|"><span></span><span></span></span>等,需先拆分区间化成若干个积分
<b>5.换序型</b>
后交先定限,线内画条线<br>先交写下限,后交写上限
反常积分的计算
①<span class="equation-text" data-index="0" data-equation="\int_a^{+\infin} f(x) \ \mathrm{d}x=F(+\infin)-F(a)" contenteditable="false"><span></span><span></span></span>,其中<span class="equation-text" contenteditable="false" data-index="1" data-equation="F(+\infin)=\lim_{x\to\infin}F(x)"><span></span><span></span></span>
例9.39
②若a为瑕玷,则<span class="equation-text" data-index="0" data-equation="\int_a^bf(x)\ \mathrm{d}x=F(b)-F(a)" contenteditable="false"><span></span><span></span></span>,其中<span class="equation-text" contenteditable="false" data-index="1" data-equation="F(a)=\lim _{x\to a^+}F(x)"><span></span><span></span></span>
例9.40
③换元后,可能可以化成定积分
例9.40
第10讲 一元函数积分学的应用(一)<br>——几何应用
研究内容
1)面积
例10.1~例10.12<br>
直角坐标系下的面积公式:<span class="equation-text" contenteditable="false" data-index="0" data-equation="S=\int_a^b|f(x)-g(x)|\ \mathrm{d}x"><span></span><span></span></span>
极坐标系下的面积公式:<span class="equation-text" contenteditable="false" data-index="0" data-equation="S=\int_{\alpha}^{\beta}\frac{1}{2}|r_2^2(\theta)-r_1^2(\theta)|\ \mathrm{d}\theta"><span></span><span></span></span><br>
子主题
螺线
阿氏螺线<span class="equation-text" data-index="0" data-equation="r=a\theta" contenteditable="false"><span></span><span></span></span>,取<span class="equation-text" contenteditable="false" data-index="1" data-equation="a=1,r=\theta"><span></span><span></span></span>
对数螺线<span class="equation-text" data-index="0" data-equation="r=ae^{k\theta}" contenteditable="false"><span></span><span></span></span>,如<span class="equation-text" contenteditable="false" data-index="1" data-equation="r=e^\theta"><span></span><span></span></span>
双曲螺线<span class="equation-text" data-index="0" data-equation="r=\frac{a}{\theta}" contenteditable="false"><span></span><span></span></span>,如<span class="equation-text" contenteditable="false" data-index="1" data-equation="r=\frac{1}{\theta}"><span></span><span></span></span>
2)旋转体体积
例10.13~例10.17<br>
①绕x轴:<span class="equation-text" contenteditable="false" data-index="0" data-equation="V_x=\int_a^b\pi y^2(x)\ \mathrm{d}x"><span></span><span></span></span>.<br>
②绕y轴:<span class="equation-text" contenteditable="false" data-index="0" data-equation="V_y=\int_a^b2\pi x|y(x)|\ \mathrm{d}x"><span></span><span></span></span>.(柱壳法)
3)平均值
例10.18
公式:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{f}=\frac{1}{b-a}\int_a^bf(x)\ \mathrm{d}x"><span></span><span></span></span>.
4)平面曲线的弧长
例10.19~例10.25
直角坐标方程:<span class="equation-text" contenteditable="false" data-index="0" data-equation="s=\int_a^b\sqrt{1+[y^\prime(x)]^2}\ \mathrm{d}x"><span></span><span></span></span>.
参数方程:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{\alpha}^{\beta}\sqrt{[x^\prime(t)]^2+[y^\prime(t)]^2}\ \mathrm{d}t"><span></span><span></span></span>.
极坐标方程:<span class="equation-text" contenteditable="false" data-index="0" data-equation="s=\int_\alpha^\beta \sqrt{[r(\theta)]^2+[r^\prime(\theta)]^2}\ \mathrm{d}\theta"><span></span><span></span></span>
5)旋转曲面的面积(侧面积)
例10.26、例10.27
曲线y=y(x)在区间[a,b]上的曲线弧段绕x轴旋转一周所得旋转曲面的面积<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="S=2\pi\int_a^b|y(x)|\sqrt{1+[y\prime(x)]^2}\ \mathrm{d}x"><span></span><span></span></span><br>
曲线<span class="equation-text" data-index="0" data-equation="\{^{x=x(t)}_{y=y(t)}(\alpha≤t≤\beta,x^\prime(t)≠0)" contenteditable="false"><span></span><span></span></span>在区间<span class="equation-text" data-index="1" data-equation="[\alpha,\beta]" contenteditable="false"><span></span><span></span></span>上的曲线弧绕x轴旋转一周所得旋转曲面的面积<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="S=2\pi\int_\alpha^\beta|y(t)|\sqrt{[x^\prime(t)]^2+[y^\prime(t)]^2}\ \mathrm{d}t"><span></span><span></span></span><br>
6)"平面上的曲边梯形"的形心坐标公式
例10.28、例10.29
设<span class="equation-text" data-index="0" data-equation="D=\{(x,y)|0≤y≤f(x),a≤x≤b\},f(x)" contenteditable="false"><span></span><span></span></span>在[a,b]上连续,D的形心坐标为<span class="equation-text" data-index="1" data-equation="(\overline{x},\overline{y})" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="2" data-equation="\overline{x}=\frac{\iint_Dx\ \mathrm{d}\sigma}{\iint_D\ \mathrm{d}\sigma}=\frac{\int_a^b\ \mathrm{d}x\int_0^{f(x)}x\ \mathrm{d}y}{\int_a^b\ \mathrm{d}x\int_0^{f(x)}\ \mathrm{d}y}=\frac{\int_a^bxf(x)\ \mathrm{d}x}{\int_a^bf(x)\ \mathrm{d}x}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="3" data-equation="\overline{y}=\frac{\iint_Dy\ \mathrm{d}\sigma}{\iint_D\ \mathrm{d}\sigma}=\frac{\int_a^b\ \mathrm{d}x\int_0^{f(x)}y\ \mathrm{d}y}{\int_a^b\ \mathrm{d}x\int_0^{f(x)}\ \mathrm{d}y}=\frac{\frac{1}{2}\int_a^bf^2(x)\ \mathrm{d}x}{\int_a^bf(x)\ \mathrm{d}x}"><span></span><span></span></span><br>
质量均匀分布时:质心=形心<br>
7)平行截面面积为已知的立体体积
例10.30
在区间[a,b]上,垂直于x轴的平面截立体o所得到的截面面积为x的连续函数S(x),则o的体积为<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="V=\int_a^bS(x)\ \mathrm{d}x"><span></span><span></span></span><br>
第11讲 一元函数积分学的应用(二)<br>——积分等式与积分不等式
积分等式
常用积分等式(见第9讲"三、定积分的计算").
通过证明某特殊积分等式求某特殊积分
例11.1、例11.2
积分形式的中值定理
例11.3、例11.4、例11.5
积分不等式
<b>※1)用函数的单调性(主流考点):</b><br>首先将某一限(上限或下限)变量化,然后移项构造辅助函数,由辅助函数的单调性来证明不等式。<br>此方法多用于所给条件为"f(x)在[a,b]上连续"的情形。
例11.6、例11.7
<b>2)处理被积函数</b><br>
<b>①用积分保号性</b><br>已知f(x)≤g(x),用积分保号性证得<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_a^bf(x)\ \mathrm{d}x≤\int_a^bg(x)\ \mathrm{d}x,a<b"><span></span><span></span></span><br>
例11.8
<b>②用拉格朗日中值定理</b><br>用拉格朗日中值定理处理被积函数f(x),再做不等式,进一步,用积分保号性<br>此方法多用于所给条件为"f(x)一阶可导"且题中由较简单的函数值(0,1等)的题目
例11.9<br>
<b>③用泰勒公式</b><br>将f(x)展开成泰勒公式,再做不等式,进一步,用积分保号性。<br>此方法多用于所给条件为"f(x)二阶(或更高阶)可导"且题中由较简单的函数值(0,1等)的题目<b><br></b>
例11.10
<b>④用放缩法</b><br>利用常见不等关系处理被积函数,进一步用积分保号性<br>常见不等关系:<span class="equation-text" data-index="0" data-equation="|\sin x|≤1,|\cos x|≤1,\sin x≤x(x≥0)" contenteditable="false"><span></span><span></span></span>,<br>闭区间上连续函数f(x)有<span class="equation-text" contenteditable="false" data-index="1" data-equation="|f(x)|≤M(\exist M>0),\sqrt{ab}≤\frac{a+b}{2}≤\sqrt{\frac{a^2+b^2}{2}}(a,b>0)"><span></span><span></span></span>等
例11.11
<b>⑤用分部积分法</b><br>利用分部积分法处理被积函数,再利用已知条件进一步推证
例11.12
<b>⑥用换元法</b><br>见到复合函数的积分,可考虑换元法
例11.13
<b>3)用夹逼准则求解一类积分的极限问题</b>
例11.14
<b>4)曲边梯形面积的连续化与离散化问题</b>
例11.15
第12讲 一元函数积分学的应用(三)<br>——物理应用与经济应用
物理应用(微元法)<br>(仅数一、数二)
<b>1.总路程:</b><span class="equation-text" data-index="0" data-equation="S=\int_{t_1}^{t_2}v(t)\ \mathrm{d}t" contenteditable="false"><span></span><span></span></span><br>其中v(t)为时间<span class="equation-text" data-index="1" data-equation="t_1" contenteditable="false"><span></span><span></span></span>到<span class="equation-text" contenteditable="false" data-index="2" data-equation="t_2"><span></span><span></span></span>上的速度函数,积分即得总位移(路程)S
例12.1
<b>2.变力沿直线做功</b><br>设方向沿x轴正向的力函数F(x)(a≤x≤b),则物体沿x轴从点a移动到点b时,变力F(x)所做的功为<br><span class="equation-text" data-index="0" data-equation="W=\int_a^bF(x)\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span>,功的元素<span class="equation-text" contenteditable="false" data-index="1" data-equation="\mathrm{d}W=F(x)\ \mathrm{d}x"><span></span><span></span></span>
例12.2
<b>3.提取物体做功</b><br>将容器中的水全部抽出所做的功为<span class="equation-text" data-index="0" data-equation="W=\rho g\int_a^bxA(x)\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span>,其中<span class="equation-text" data-index="1" data-equation="\rho" contenteditable="false"><span></span><span></span></span>为水的密度,g为重力加速度<br>功的元素<span class="equation-text" contenteditable="false" data-index="2" data-equation="\mathrm{d}W=\rho gxA(x)\ \mathrm{d}x"><span></span><span></span></span>为位于x处厚度为dx,水平截面面积为A(x)的一层水被抽出(路程为x)所做的功<br>
例12.3~例12.6
<b>4.静水压力</b><br>垂直浸没在水中的平板ABCD的一侧受到水压力为<span class="equation-text" data-index="0" data-equation="P=\rho g\int_a^bx[f(x)-h(x)]\ \mathrm{d}x" contenteditable="false"><span></span><span></span></span>,其中<span class="equation-text" data-index="1" data-equation="\rho" contenteditable="false"><span></span><span></span></span>为水的密度,g为重力加速度<br>压力元素<span class="equation-text" contenteditable="false" data-index="2" data-equation="\mathrm{d}p=\rho gx[f(x)-h(x)]\ \mathrm{d}x"><span></span><span></span></span>是图中矩形条所受到的压力,x是水深,f(x)-h(x)是矩形条的宽度,dx是矩形条的高度
例12.7<br>
<b>5.细杆质心</b><br>设直线段上的线密度为<span class="equation-text" data-index="0" data-equation="\rho(x)" contenteditable="false"><span></span><span></span></span>的细直杆,则其质心为<span class="equation-text" contenteditable="false" data-index="1" data-equation="\overline{x}=\frac{\int_a^bx\rho(x)\ \mathrm{d}x}{\int_a^b\rho(x)\ \mathrm{d}x}"><span></span><span></span></span><br>
例12.8
<b>6.其他重要应用(微元法总结)</b>
例12.9
第13讲 多元函数微分学
一、概念
<span class="equation-text" data-index="0" data-equation="z=f(x,y)" contenteditable="false"><span></span><span></span></span>在点<span class="equation-text" contenteditable="false" data-index="1" data-equation="(x_0,y_0)"><span></span><span></span></span>处,的概念关系图
<b>1.极限:<br></b><span class="equation-text" contenteditable="false" data-index="0" data-equation="\lim_{(x,y)\to(x_{_0},y_{_0})}=A"><span></span><span></span></span>(洛必达法则、单调有界准则不能用)
例13.1、例13.2
<b>2.连续:<br></b>若<span class="equation-text" data-index="0" data-equation="\lim_{(x,y)\to(x_{_0},y_{_0})}=f(x_0,y_0)" contenteditable="false"><span></span><span></span></span>则称<span class="equation-text" data-index="1" data-equation="f(x,y)" contenteditable="false"><span></span><span></span></span>在点<span class="equation-text" data-index="2" data-equation="(x_0,y_0)" contenteditable="false"><span></span><span></span></span>处连续<b><br></b>
例13.3、例13.4
<b>3.偏导数:</b><br>
<b>一阶偏导数:</b><br>设函数z=f(x,y)在点<span class="equation-text" data-index="0" data-equation="(x_0,y_0)" contenteditable="false"><span></span><span></span></span>的某领域内有定义,<br>若极限<span class="equation-text" data-index="1" data-equation="\lim_{\triangle x\to0}\frac{f(x_0+\triangle x,y_0)-f(x_0,y_0)}{\triangle x}" contenteditable="false"><span></span><span></span></span>存在,则称此极限为函数z=f(x,y)在点<span class="equation-text" data-index="2" data-equation="(x_0,y_0)" contenteditable="false"><span></span><span></span></span>处对x的偏导数,<br>记作<span class="equation-text" data-index="3" data-equation="\frac{\partial z}{\partial x}|_{(x_0,y_0)},\frac{\partial f}{\partial x}|_{(x_0,y_0)},z^\prime_x|_{(x_0,y_0)}" contenteditable="false"><span></span><span></span></span>或<span class="equation-text" data-index="4" data-equation="f^\prime_x(x_0,y_0)" contenteditable="false"><span></span><span></span></span>。<br>于是<span class="equation-text" data-index="5" data-equation="f_x^\prime(x_0,y_0)=\lim_{\triangle\to0}\frac{f(x_0+\triangle x,y_0)-f(x_0,y_0)}{\triangle x}=\lim_{x\to x_0}\frac{f(x,y_0)-f(x_0,y_0)}{x-x_0}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="6" data-equation="f_y^\prime(x_0,y_0)=\lim_{\triangle y\to0}\frac{f(x_0,y_0+\triangle y)-f(x_0,y_0)}{\triangle y}=\lim_{y\to y_0}\frac{f(x_0,y)-f(x_0,y_0)}{y-y_0}"><span></span><span></span></span><br>
<b>二阶偏导数:</b><br> 如果函数<span class="equation-text" data-index="0" data-equation="z=f(x,y)" contenteditable="false"><span></span><span></span></span>在区域D内的偏导数<span class="equation-text" data-index="1" data-equation="f_x^\prime(x,y),f_y^\prime(x,y)" contenteditable="false"><span></span><span></span></span>仍具有偏导数,则它们的导数称为函数<span class="equation-text" data-index="2" data-equation="z=f(x,y)" contenteditable="false"><span></span><span></span></span>的二阶偏导数,按照对变量的求导次序不同,有如下四个二阶偏导数:<br>①<span class="equation-text" data-index="3" data-equation="\frac{\partial}{\partial x}(\frac{\partial z}{\partial x})=\frac{\partial^2z}{\partial x^2}=f^{\prime\prime}_{xx}(x,y)" contenteditable="false"><span></span><span></span></span><br>②<span class="equation-text" data-index="4" data-equation="\frac{\partial}{\partial x}(\frac{\partial z}{\partial y})=\frac{\partial^2z}{\partial y\partial x}=f^{\prime\prime}_{yx}(x,y)" contenteditable="false"><span></span><span></span></span><br>③<span class="equation-text" data-index="5" data-equation="\frac{\partial}{\partial y}(\frac{\partial z}{\partial x})=\frac{\partial^2z}{\partial x\partial y}=f^{\prime\prime}_{xy}(x,y)" contenteditable="false"><span></span><span></span></span><br>④<span class="equation-text" data-index="6" data-equation="\frac{\partial}{\partial y}(\frac{\partial z}{\partial y})=\frac{\partial^2z}{\partial y^2}=f^{\prime\prime}_{yy}(x,y)" contenteditable="false"><span></span><span></span></span><br>其中<span class="equation-text" contenteditable="false" data-index="7" data-equation="f^{\prime\prime}_{xy}(x,y),f^{\prime\prime}_{yx}(x,y)"><span></span><span></span></span>称为<b>二阶混合偏导数,</b>同样可得三阶、四阶以及n阶偏导数,二阶及二阶以上的偏导数统称为<b>高阶偏导数。</b>
<b>★4.可微:</b>
<b>全微分</b>:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mathrm{d}z=\frac{\partial z}{\partial x}\mathrm{d}x+\frac{\partial z}{\partial y}\mathrm{d}y"><span></span><span></span></span><br>
<b><span class="equation-temp"></span>判断函数</b><span class="equation-text" data-index="0" data-equation="z=f(x,y)" contenteditable="false"><span></span><span></span></span><b>是否可微</b>,步骤如下:<br>①写出<b>全增量</b><span class="equation-text" data-index="1" data-equation="\triangle z=f(x_0+\triangle x,y_0+\triangle y)-f(x_0,y_0)" contenteditable="false"><span></span><span></span></span>;<br>②写出<b>线性增量</b><span class="equation-text" data-index="2" data-equation="A\triangle x+B\triangle y" contenteditable="false"><span></span><span></span></span>,其中<span class="equation-text" data-index="3" data-equation="A=f^\prime_x(x_0,y_0),B=f^\prime_y(x_0,y_0)" contenteditable="false"><span></span><span></span></span>;<br>③若极限<span class="equation-text" data-index="4" data-equation="\lim_{(\triangle x\to 0,\triangle y\to 0)}\frac{\triangle z-(A\triangle x+B\triangle y)}{\sqrt{(\triangle x)^2+(\triangle y)^2}}=0" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="5" data-equation="z=f(x,y)" contenteditable="false"><span></span><span></span></span>在点<span class="equation-text" contenteditable="false" data-index="6" data-equation="(x_0,y_0)"><span></span><span></span></span>可微,否则不可微.
例13.4、例13.7、例13.8
<b>※(考研重点)5.偏导连续:</b><br>对于<span class="equation-text" data-index="0" data-equation="z=f(x,y)" contenteditable="false"><span></span><span></span></span>,讨论其在某特殊点<span class="equation-text" data-index="1" data-equation="(x_0,y_0)" contenteditable="false"><span></span><span></span></span>(比如二元分段函数的分段点)处偏导数是否连续,其步骤为:<br>①用定义法求<span class="equation-text" data-index="2" data-equation="f_x^\prime(x_0,y_0),f_y^\prime(x_0,y_0)" contenteditable="false"><span></span><span></span></span>;<br>②用公式法求<span class="equation-text" data-index="3" data-equation="f_x^\prime(x,y),f_y^\prime(x,y)" contenteditable="false"><span></span><span></span></span>;<br>③计算<span class="equation-text" data-index="4" data-equation="\lim_{(x,y)\to(x_0,y_0)}f^\prime_x(x,y),\lim_{(x,y)\to(x_0,y_0)}f^\prime_y(x,y)" contenteditable="false"><span></span><span></span></span>;<br>若满足<span class="equation-text" data-index="5" data-equation="\lim_{(x,y)\to(x_0,y_0)}f_x^\prime(x,y)=f^\prime_x(x_0,y_0),\lim_{(x,y)\to(x_0,y_0)}f_y^\prime(x,y)=f^\prime_y(x_0,y_0)" contenteditable="false"><span></span><span></span></span>则<span class="equation-text" data-index="6" data-equation="z=f(x,y)" contenteditable="false"><span></span><span></span></span>在点<span class="equation-text" contenteditable="false" data-index="7" data-equation="(x_0,y_0)"><span></span><span></span></span>处偏导数连续<br>
例13.7
二、复合函数求导法
<b>1.链式求导规则</b>
例13.9、例13.10、例13.11
<b>2.全导数</b>
例13.3
3.全微分形式不变性
例13.4、例13.5
三、隐函数求导法
<b>1.一个方程的情形</b><br>设<span class="equation-text" data-index="0" data-equation="F(x,y,z)=0,P_0(x_0,y_0,z_0)" contenteditable="false"><span></span><span></span></span>,若满足①<span class="equation-text" data-index="1" data-equation="F(P_0)=0" contenteditable="false"><span></span><span></span></span>;②<span class="equation-text" data-index="2" data-equation="F^\prime_z(P_0)≠0" contenteditable="false"><span></span><span></span></span>,<b>(隐函数存在定理)</b><br>则在<span class="equation-text" data-index="3" data-equation="P_0" contenteditable="false"><span></span><span></span></span>的某邻域内可确定<span class="equation-text" data-index="4" data-equation="z=z(x,y)" contenteditable="false"><span></span><span></span></span>,且有<span class="equation-text" contenteditable="false" data-index="5" data-equation="\frac{\partial z}{\partial x}=-\frac{F^\prime_x}{F^\prime_z},\frac{\partial z}{\partial y}=-\frac{F^\prime_y}{F^\prime_z}"><span></span><span></span></span>
例13.12、例13.14、例13.16、例13.17
<b>2.方程组的情形</b>
例13.3
四、多元函数的极值、最值
1.多元函数的泰勒公式(仅数学一)
2.无条件极值
<b>1)取极值的必要条件<br></b><span class="equation-text" data-index="0" data-equation="(f^\prime_x,f^\prime_y)_{X_0}=0" contenteditable="false"><span></span><span></span></span>,<span class="equation-text" data-index="1" data-equation="X_0(x_0,y_0)" contenteditable="false"><span></span><span></span></span>为驻点,即<span class="equation-text" contenteditable="false" data-index="2" data-equation="f_x^\prime(x_0,y_0)=0,f_y^\prime(x_0,y_0)=0"><span></span><span></span></span><br>
<b>2)取极值的充分条件<br></b>
3.条件极值与拉氏乘除法<br>
五、偏导微分方程
第14讲 二重积分
第15讲 微分方程
0 条评论
下一页