概率论与数理统计思维导图
2021-11-29 14:07:37 2 举报
AI智能生成
概率论与数理统计前两章思维导图
作者其他创作
大纲/内容
随机事件及概率
随机事件及其运算
样本空间Ω:一切可能的结果组成的集合
离散型样本空间:个数有限、可列个
连续性样本空间:个数不可列、无限个
随机事件:Ω的子集:某些结果的集合
∅:不可能事件
Ω:必然事件
基本事件:事件的结果不可再分
事件间的关系及运算
包含关系:事件A发生,事件B必然发生,记作A ⊆B
相等关系,记作A=B
互不相容:事件A与B不可能同时发生
事件的并(和):事件A与B至少有一个发生,记住A∪B
事件的交(积):事件A与B同时发生,记住A∩B、AB
事件的差:事件A发生而B不发生的概率,记住A-B
对立事件:事件A的对立事件,A与B互为对立事件的充要条件A∩B=∅,A∪B=Ω
交换律
A∪B=B∪A
A ∩B=B ∩A
结合律
A ∩(B∩C)=(A ∩B)∩C
A∪(B∪C)=(A∪B)∪C
分配律
A∪BC=(A∪B)∩(A∪C)
A(B∪C)=AB∪AC
对偶律
概率及运算
概率的公理化定义
非负性:P(A)>0
正则性:P(Ω)=1
可列可加性
排列与组合
排列
组合
古典概率
有限个样本
等可能性(每个样本点发生的可能性相等)
公式:p(A)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{事件A所含样本点个数}{Ω中所有样本点的个数}"><span></span><span></span></span>
几何概率
公式:P(A)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{S_{A}}{S_Ω}"><span></span><span></span></span>
样本空间无限
运算
P(∅)=0
有限可加性
若A⊇B,则P(A-B)=P(A)-P(B)推论:若A⊇B,则P(A)>P(B)
P(A-B)=P(A)-P(AB)
P(A∪B)=P(A)+P(B)-P(AB)推论:P(A∪B)≤P(A)+P(B)
条件概率
在条件B下A发生的概率
乘法公式:若P(B)&gt;0,则P(AB)=P(B)P(A|B)
全概率公式 B1,B2....Bn互不相容
贝叶斯公式
独立性
独立事件:事件A事件B发生互不影响。P(A|B)=P(A) P(AB)=P(A)P(B)
互斥事件:P(A|B)=0 P(AB)=0
随机变量及其分布
随机变量及其分布
数学期望
离散随机变量
E(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sum_{i=1}^{∞}{x_{i}f(x_{i})}"><span></span><span></span></span>
连续随机变量
E(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="∫_{-∞}^{∞}{xf(x)dx}"><span></span><span></span></span>
E(aX)=aE(X)
E[g(X)]=<span class="equation-text" data-index="0" data-equation="\sum_{i}{g(x_{i})f(x_{i})}" contenteditable="false"><span></span><span></span></span>, 在离散场合<br> <span class="equation-text" contenteditable="false" data-index="1" data-equation="∫_{-∞}^{∞}{g(x)f(x)dx}"><span></span><span></span></span>,在连续场合
E(c)=c
E[g(X)+h(X)]=E[g(X)]+E[h(X)]
方差与标准差
离散随机变量
连续随机变量
离散随机变量的概率分布列
表格形式
非负性:每个概率都大于等于0
正则性:概率之和为1
连续随机变量的概率密度函数
f(x)是非负可积函数,x∈(-∞,+∞)
P(a<X≤b)=∫(a,b)f(x)dx,记作x~f(x)
非负性:f(x)>0,正则性:f(x)在-∞到+∞上的积分等于1
<span class="equation-text" data-index="0" data-equation="{F(x)}=" contenteditable="false"><span></span><span></span></span><span class="equation-text" data-index="1" data-equation="{∫^{x}_{-∞}{f(t)d(t)}}" contenteditable="false"><span></span><span></span></span>,且<span class="equation-text" contenteditable="false" data-index="2" data-equation="{F`(x)=f(x)}"><span></span><span></span></span>
P(a≤x≤b)=P(a<x<b)=P(a≤x<b)=P(a<x≤b)
离散随机变量及其分布<br>X~<span class="equation-text" data-index="0" data-equation="P_i" contenteditable="false"><span></span><span></span></span>,则F(X)= <span class="equation-text" contenteditable="false" data-index="1" data-equation="\sum_{x_i<=x}(P_i)"><span></span><span></span></span> <br>
定义:随机变量仅可能取有限个或可列个值
0-1分布
P(X=x)=<span class="equation-text" data-index="0" data-equation="p^x" contenteditable="false"><span></span><span></span></span>(1-<span class="equation-text" contenteditable="false" data-index="1" data-equation="p^{1-x}"><span></span><span></span></span>),x=0,1
二项分布
P(X=k)=<span class="equation-text" data-index="0" data-equation="C^n_k" contenteditable="false"><span></span><span></span></span> <span class="equation-text" data-index="1" data-equation="p^k" contenteditable="false"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="2" data-equation="(1-p)^{n-k}"><span></span><span></span></span><br>X~B(n,p)
E(X)=np
Var(X)=np(1-p)
泊松分布
P(X=k)=<span class="equation-text" data-index="0" data-equation="\frac{λ^k}{k!}" contenteditable="false"><span></span><span></span></span><span class="equation-text" contenteditable="false" data-index="1" data-equation="e^{-λ}"><span></span><span></span></span>,k=0,1,2,……,λ>0,记为:X~P(λ)
E(X)=λ
Var(X)=λ
超几何分布
P(X=k)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{C^k_M C^{n-k}_{N-M}}{C^n_N}"><span></span><span></span></span>,k=0,1,2……,r
E(X)=n <span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{M}{N}"><span></span><span></span></span>
Var(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{nM(N-M)(N-n)}{N^2(N-1)}"><span></span><span></span></span>
几何分布
P(X=k)= <span class="equation-text" data-index="0" data-equation="(1-p)^{k-1}{p}" contenteditable="false"><span></span><span></span></span>,k=1,2……
E(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{p}"><span></span><span></span></span>
Var(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1-p}{p^2}"><span></span><span></span></span>
无记忆性
连续随机变量及其分布<br>X~<span class="equation-text" contenteditable="false" data-index="0" data-equation="{f(x)}"><span></span><span></span></span>,则F(X)=<span class="equation-text" data-index="1" data-equation="∫^{-∞}_{x}{f(t)dt}" contenteditable="false"><span></span><span></span></span>
定义:随机变量的可能取值充满数轴上一个区间(a,b)
均匀分布<br>X~U(a,b)
E(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{a+b}{2}"><span></span><span></span></span>
Var(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{(b-a)^{2}}{12}"><span></span><span></span></span>
正态分布<br>X~(μ,<span class="equation-text" contenteditable="false" data-index="0" data-equation="{σ^2}"><span></span><span></span></span>)
E(X)=μ
Var(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="{σ^2}"><span></span><span></span></span>
指数分布<br>X~<span class="equation-text" contenteditable="false" data-index="0" data-equation="{Exp}"><span></span><span></span></span>(λ)
E(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{λ}"><span></span><span></span></span>
Var(X)=<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{λ^2}"><span></span><span></span></span>
无记忆性
伽马分布
贝塔分布
分布函数
概念:F(x)=P(X≤x),记为X~F(x),也可表示FX(x) 把X写成F的下标,x∈(-∞,+∞)
F(x)是分布函数,是累计概率,是事件{X≤x}的所有概率之和
单调性:单调递增
有界性:0≤F(x)≤1且F(-∞)=0,F(+∞)=1
右连续性:F(a+0)=F(a)
计算分布函数
离散型
“符合范围,直接相加”(0-1分布,二项分布,泊松分布)
连续型
分支主题
P(x>b)=1-F(b)
P(a<x≤b)=F(b)-F(a)
二维随机变量及其分布
收藏
0 条评论
下一页