概率论与数理统计
2023-02-22 11:47:03 1 举报
AI智能生成
大学概率论与数理统计所有知识点
作者其他创作
大纲/内容
5 大数定律与中心极限定理
5.1 大数定律
伯努利大数定理<br>
设<span class="equation-text" data-index="0" data-equation="n_A" contenteditable="false"><span></span><span></span></span>是<span class="equation-text" contenteditable="false" data-index="1" data-equation="n"><span></span><span></span></span>次重复独立实验中事件<span class="equation-text" data-index="2" data-equation="A" contenteditable="false"><span></span><span></span></span>发生的次数,<span class="equation-text" data-index="3" data-equation="p" contenteditable="false"><span></span><span></span></span>是事件<span class="equation-text" data-index="4" data-equation="A" contenteditable="false"><span></span><span></span></span>在每次实验中发生的概率,则对于任意正数<span class="equation-text" data-index="5" data-equation="\epsilon > 0" contenteditable="false"><span></span><span></span></span>,有:<br><span class="equation-text" data-index="6" data-equation="\lim_{n\to \infty}P\left(\left|\frac{n_\text{A}}{n}-p\right| < \epsilon \right) = 1" contenteditable="false"><span></span><span></span></span><br>或:<br><span class="equation-text" data-index="7" data-equation="\lim_{n\to \infty}P\left(\left|\frac{n_\text{A}}{n}-p\right| \ge \epsilon \right) = 0" contenteditable="false"><span></span><span></span></span><br>
辛钦大数定律
设有随机变量:<span class="equation-text" contenteditable="false" data-index="0" data-equation="X_1,X_2,\cdots,X_n"><span></span><span></span></span>,这些随机变量相互独立,服从同一分布,且具有相同的数学期望:<br><span class="equation-text" data-index="1" data-equation="E(X_i)=\mu,\quad i=1,2,\cdots,n" contenteditable="false"><span></span><span></span></span><br>令:<br><span class="equation-text" data-index="2" data-equation="\overline{X}=\frac{X_1+X_2+\cdots+X_n}{n}" contenteditable="false"><span></span><span></span></span><br>则对于任意<span class="equation-text" data-index="3" data-equation="\epsilon > 0" contenteditable="false"><span></span><span></span></span>有:<br><span class="equation-text" data-index="4" data-equation="\lim_{n\to \infty}P\left(\left|\overline{X}-\mu\right| < \epsilon \right) = 1" contenteditable="false"><span></span><span></span></span><br>或:<br><span class="equation-text" data-index="5" data-equation="\lim_{n\to \infty}P\left(\left|\overline{X}-\mu\right| \ge \epsilon \right) = 0" contenteditable="false"><span></span><span></span></span><br>也可以表述为:<br><span class="equation-text" data-index="6" data-equation="\overline{X}\xrightarrow{\quad P \quad}\mu,\quad n\to\infty" contenteditable="false"><span></span><span></span></span>
切比雪夫大数定理
设有随机变量:<span class="equation-text" data-index="0" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>,这些随机变量两两不相关,若每个随机变量<span class="equation-text" contenteditable="false" data-index="1" data-equation="X_i"><span></span><span></span></span>的方差存在,且有共同的上界,即:<br><span class="equation-text" data-index="2" data-equation="Var(X_i)\le c,\quad i=1,2,\cdots,n" contenteditable="false"><span></span><span></span></span><br>令:<br><span class="equation-text" data-index="3" data-equation="\overline{X}=\frac{X_1+X_2+\cdots+X_n}{n},\quad \mu=E(\overline{X})" contenteditable="false"><span></span><span></span></span><br>则对于任意<span class="equation-text" data-index="4" data-equation="\epsilon > 0" contenteditable="false"><span></span><span></span></span>有:<br><span class="equation-text" data-index="5" data-equation="\lim_{n\to \infty}P\left(\left|\overline{X}-\mu\right| < \epsilon \right) = 1" contenteditable="false"><span></span><span></span></span><br>或:<br><span class="equation-text" data-index="6" data-equation="\lim_{n\to \infty}P\left(\left|\overline{X}-\mu\right| \ge \epsilon \right) = 0" contenteditable="false"><span></span><span></span></span><br>也可以表述为:<br><span class="equation-text" data-index="7" data-equation="\overline{X}\xrightarrow{\quad P \quad}\mu,\quad n\to\infty" contenteditable="false"><span></span><span></span></span>
关系
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c} \hline \quad \quad &\quad 分布\quad&\quad 独立性\quad&\quad 方差\quad\\ \hline \\ \quad伯努利大数\quad & \quad伯努利分布\quad & \quad独立\quad & \quad无要求\quad\\ 辛钦大数 & 同分布 & 独立 & 无要求 \\ 切比雪夫大数 & 无要求 & 不相关 & 同上界\\ \\ \hline\end{array}"><span></span><span></span></span>
5.2 中心极限定理
棣莫弗-拉普拉斯定理(中心极限定理的一种)
设随机变量<span class="equation-text" data-index="0" data-equation="X\sim b(n,p)" contenteditable="false"><span></span><span></span></span>,则对任意<span class="equation-text" contenteditable="false" data-index="1" data-equation="x"><span></span><span></span></span>有:<br><span class="equation-text" data-index="2" data-equation="\lim_{n\to\infty}P\left(\frac{X-np}{\sqrt{np(1-p)}}\le x\right)=\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^2}{2}}\mathrm{d}t" contenteditable="false"><span></span><span></span></span>
林德伯格-莱维定理
设随机变量:<br><span class="equation-text" data-index="0" data-equation="X_i,\quad i=1,2,\cdots,n" contenteditable="false"><span></span><span></span></span><br>相互独立,服从同一分布,且有相同的数学期望和方差:<br><span class="equation-text" data-index="1" data-equation="E(X_i)=\mu,\quad Var(X_i)=\sigma^2" contenteditable="false"><span></span><span></span></span><br>则随机变量:<br><span class="equation-text" data-index="2" data-equation="Y=\frac{X_1+X_2+\cdots+X_n-n\mu}{\sigma\sqrt{n}}" contenteditable="false"><span></span><span></span></span><br>对于任意实数<span class="equation-text" contenteditable="false" data-index="3" data-equation="y"><span></span><span></span></span>有:<br><span class="equation-text" data-index="4" data-equation="\lim_{n\to\infty}F_Y(y)=\lim_{n\to\infty}P(Y\le y)=\Phi(y)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{y}e^{-\frac{t^2}{2}}\mathrm{d}t" contenteditable="false"><span></span><span></span></span>
6 数理统计的基本知识
6.1 总体和样本
总体与个体
一个统计问题总有它明确的研究对象,研究对象的全体称为<font color="#ff0000">总体</font><br>
总体中每个成员称为<font color="#ff0000">个体</font>
样本
从总体中随机抽取<span class="equation-text" data-index="0" data-equation="n" contenteditable="false"><span></span><span></span></span>个个体,这些个体组成的集合称为<font color="#ff0000">样本</font>,<span class="equation-text" contenteditable="false" data-index="1" data-equation="n"><span></span><span></span></span>称为<font color="#ff0000">样本容量</font>,通常记作:<br><span class="equation-text" data-index="2" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>
简单随机样本
原则
样本要<font color="#ff0000">简单,</font>或者说有样本中的个体<font color="#ff0000">相互独立</font>,学习前面概率的时候就知道,如果独立的话计算就会比较简单<br>
样本要有和总体一样的<font color="#ff0000">随机性</font>,或者说能代表总体<br>
如此才能根据样本推断总体的情况,用数学的话来说就是样本和总体的分布相同,简称为<font color="#ff0000">同分布</font>。比如说对于总体有<span class="equation-text" contenteditable="false" data-index="0" data-equation="X\sim N(\mu,\sigma^2)"><span></span><span></span></span>,那么同分布的样本有<span class="equation-text" data-index="1" data-equation="X_i\sim N(\mu,\sigma^2)" contenteditable="false"><span></span><span></span></span>
6.2 经验分布函数
6.3 统计量与样本数字特征
定义
完全由样本所决定的量叫作<font color="#ff0000">统计量</font><br>
几个统计量
样本均值<br>
设<span class="equation-text" data-index="0" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>为取自某总体的样本,则其算术平均数:<br><span class="equation-text" data-index="1" data-equation="\overline{X}=\frac{X_1+X_2+\cdots+X_n}{n}" contenteditable="false"><span></span><span></span></span><br>称为<font color="#ff0000">样本均值</font>。
中位数
样本方差和样本标准差
定义
设<span class="equation-text" data-index="0" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>为取自某总体的样本,则称:<br><span class="equation-text" data-index="1" data-equation="\begin{aligned} S^2 &=\frac{1}{n-1}\sum_{i=1}^{n}\left(X_i-\overline{X}\right)^2\\ \\ &=\frac{1}{n-1}\left(\sum_{i=1}^{n}X_i^2-n\overline{X}^2\right)\end{aligned}" contenteditable="false"><span></span><span></span></span><br>为<font color="#ff0000">样本方差</font>,其算术平方根<span class="equation-text" data-index="2" data-equation="S=\sqrt{S^2}" contenteditable="false"><span></span><span></span></span>称为<font color="#ff0000">样本标准差</font>。
样本均值、方差和方差的关系<br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Var(\overline{X})=\sigma^2/n"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(S^2)=\sigma^2"><span></span><span></span></span><br>
6.4 一些统计量的分布
三大抽样分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c} \hline \quad 统计量\quad &\quad 概率密度函数\quad&\quad 期望\quad&\quad 方差\quad\\ \hline \\ \chi^2=X_1^2+X_2^2+\cdots+X_n^2 & p(x)=\frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n / 2}} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}(x>0) & n & 2n\\ \\ T=\frac{X}{\sqrt{\left(X_{1}^{2}+\cdots+X_{n}^{2}\right) / n}} & \begin{array}{c}p(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^{2}}{n}\right)^{-\frac{n+1}{2}}\\(-\infty < x < +\infty)\end{array} & \begin{array}{c} 0\\ (n>1)\end{array} & \begin{array}{c} \frac{n}{n-2}\\ (n>2)\end{array}\\ \\ F=\frac{\left(Y_{1}^{2}+\cdots+Y_{m}^{2}\right) / m}{\left(X_{1}^{2}+\cdots+X_{n}^{2}\right) / n} &\begin{array}{c}{p(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} x^{\frac{m}{2}-1}} \\ {\left(1+\frac{m}{n} x\right)^{-\frac{m+n}{2}}}\end{array} & \begin{array}{c}{\frac{n}{n-2}} \\ {(n>2)}\end{array} & \begin{array}{c}{\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}} \\ {(n>4)}\end{array}\\ \\ \hline\end{array}"><span></span><span></span></span><br>
卡方分布<br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="t"><span></span><span></span></span>分布<br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F"><span></span><span></span></span>分布
定理一
样本均值的分布
定义
设<span class="equation-text" data-index="0" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>为取自某总体的简单随机样本,对应的样本均值为<span class="equation-text" data-index="1" data-equation="\overline{X}" contenteditable="false"><span></span><span></span></span>,则<font color="#ff0000">样本均值的分布</font>为:<br><span class="equation-text" data-index="2" data-equation="\quad(1)若总体分布的为N(\mu, \sigma^2),则:\overline{X}\sim N(\mu, \frac{\sigma^2}{n})\quad 或\quad \frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="3" data-equation="\quad(2)若总体分布不是正态分布,E(X)=\mu,Var(X)=\sigma^2,则:\overline{X}\stackrel{\cdot}{\sim} N(\mu, \frac{\sigma^2}{n})" contenteditable="false"><span></span><span></span></span><br>其中<span class="equation-text" data-index="4" data-equation="\stackrel{\cdot}{\sim}" contenteditable="false"><span></span><span></span></span>表示的是当<span class="equation-text" data-index="5" data-equation="n" contenteditable="false"><span></span><span></span></span>足够大时,差不多服从于<span class="equation-text" contenteditable="false" data-index="6" data-equation="N(\mu, \frac{\sigma^2}{n}"><span></span><span></span></span>)的意思。
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{X}\sim N(\mu, \frac{\sigma^2}{n})"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)"><span></span><span></span></span>
样本的分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\chi^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n)"><span></span><span></span></span>
样本方差的分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)"><span></span><span></span></span>
定理二
样本均值、标准差分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)"><span></span><span></span></span>
定理三
样本均值差的分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sigma_1^2和\sigma_2^2均已知"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation=" \begin{array}{l}{\frac{(\overline{X}-\overline{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}} \\ { \sim N(0,1)}\end{array} "><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{l}{\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}}\\{均未知}\end{array} "><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation=" \begin{array}{l}{\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{S_{W} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim } \\ {t\left(n_{1}+n_{2}-2\right)}\end{array} "><span></span><span></span></span>
其中:<span class="equation-text" contenteditable="false" data-index="0" data-equation="S_{W}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}"><span></span><span></span></span>
样本方差比的分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2}=\frac{S_X^2/S_Y^2}{\sigma_1^2/\sigma_2^2}\sim F(n-1, m-1)"><span></span><span></span></span>
7 参数估计
7.1 点估计
定义
设<span class="equation-text" data-index="0" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>为取自某总体的样本,若构造某统计量<span class="equation-text" data-index="1" data-equation="\hat\theta(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>作为总体分布中未知参数<span class="equation-text" contenteditable="false" data-index="2" data-equation="\theta"><span></span><span></span></span>的近似(或者说估计),可以称此统计量为估计量<font color="#ff0000">估计量</font>,称此估计量<span class="equation-text" data-index="3" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>为<span class="equation-text" data-index="4" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">点估计</font>
相关性质
<span style="color: rgb(0, 0, 0); font-family: "Times New Roman", -apple-system, BlinkMacSystemFont, "Segoe UI", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "Helvetica Neue", Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; font-size: 15px;">矩估计的理论基础</span><br>
样本<span class="equation-text" data-index="0" data-equation="k" contenteditable="false"><span></span><span></span></span>阶矩是随机变量<span class="equation-text" contenteditable="false" data-index="1" data-equation="k"><span></span><span></span></span>阶矩的一致估计
设<span class="equation-text" data-index="0" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>为取自某总体<span class="equation-text" data-index="1" data-equation="X" contenteditable="false"><span></span><span></span></span>的简单随机样本,设随机变量<span class="equation-text" data-index="2" data-equation="k" contenteditable="false"><span></span><span></span></span>阶矩与样本<span class="equation-text" contenteditable="false" data-index="3" data-equation="k"><span></span><span></span></span>阶矩分别为:<br><span class="equation-text" data-index="4" data-equation="E(X^k)=\mu_k,\quad A_k=\frac{1}{n}\sum_{i=1}^{n}X_i^k,\quad k=1,2,\cdots" contenteditable="false"><span></span><span></span></span><br>则有:<br><span class="equation-text" data-index="5" data-equation="\lim_{n\to \infty}P\left(\left|A_k-\mu_k\right| < \epsilon \right) = 1" contenteditable="false"><span></span><span></span></span><br>也就是说:<br><span class="equation-text" data-index="6" data-equation="A_k\xrightarrow{\quad P\quad}\mu_k" contenteditable="false"><span></span><span></span></span><br>
发展出了点估计的<font color="#ff0000">矩法</font>,也称为<font color="#ff0000">矩估计</font>
最大似然估计
离散
若总体<span class="equation-text" contenteditable="false" data-index="0" data-equation="X"><span></span><span></span></span>为离散型随机变量,其分布律为:<br><span class="equation-text" data-index="1" data-equation="P(X=x)=p(x;\theta),\quad \theta\in\Theta" contenteditable="false"><span></span><span></span></span><br>其中,<span class="equation-text" data-index="2" data-equation="\theta" contenteditable="false"><span></span><span></span></span>表示某未知参数,<span class="equation-text" data-index="3" data-equation="\Theta" contenteditable="false"><span></span><span></span></span>表示<span class="equation-text" data-index="4" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的可能取值范围。<br>设<span class="equation-text" data-index="5" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>为<span class="equation-text" data-index="6" data-equation="X" contenteditable="false"><span></span><span></span></span>的一个简单随机样本,<span class="equation-text" data-index="7" data-equation="x_1,x_2,\cdots,x_n" contenteditable="false"><span></span><span></span></span>为来自该样本的具体数值,则样本联合分布为:<br><span class="equation-text" data-index="8" data-equation="\prod_{i=1}^{n}p(x_i;\theta)" contenteditable="false"><span></span><span></span></span><br>若以<span class="equation-text" data-index="9" data-equation="\theta" contenteditable="false"><span></span><span></span></span>为变量则有:<br><span class="equation-text" data-index="10" data-equation="L(x_1,x_2,\cdots,x_n;\theta)=\prod_{i=1}^{n}f(x_i;\theta)" contenteditable="false"><span></span><span></span></span><br>该函数称为样本的<font color="#ff0000">似然函数</font>(注意该函数中<span class="equation-text" data-index="11" data-equation="x_1,x_2,\cdots,x_n" contenteditable="false"><span></span><span></span></span>都是已知的样本值,它们都是常数)。令该函数取得最大值的<span class="equation-text" data-index="12" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>:<br><span class="equation-text" data-index="13" data-equation="L(x_1,x_2,\cdots,x_n;\hat\theta)=\max_{\theta\in\Theta}L(x_1,x_2,\cdots,x_n;\theta)" contenteditable="false"><span></span><span></span></span><br>称这个<span class="equation-text" data-index="14" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>为参数<span class="equation-text" data-index="15" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">最大似然估计值</font>,因为这个<span class="equation-text" data-index="16" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>只与<span class="equation-text" data-index="17" data-equation="x_1,x_2,\cdots,x_n" contenteditable="false"><span></span><span></span></span>有关,所以也记作<span class="equation-text" data-index="18" data-equation="\hat\theta(x_1,x_2,\cdots,x_n)" contenteditable="false"><span></span><span></span></span>。对应的统计量<span class="equation-text" data-index="19" data-equation="\hat\theta(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>称为<font color="#ff0000">最大似然估计量</font>。
连续
若总体X为连续型随机变量,其概率密度函数为:<br><span class="equation-text" data-index="0" data-equation="f(x;\theta),\quad \theta\in\Theta" contenteditable="false"><span></span><span></span></span><br>其中,<span class="equation-text" data-index="1" data-equation="\theta" contenteditable="false"><span></span><span></span></span>表示某未知参数,<span class="equation-text" data-index="2" data-equation="\Theta" contenteditable="false"><span></span><span></span></span>表示<span class="equation-text" data-index="3" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的可能取值范围。<br>设<span class="equation-text" data-index="4" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>为<span class="equation-text" data-index="5" data-equation="X" contenteditable="false"><span></span><span></span></span>的一个简单随机样本,<span class="equation-text" data-index="6" data-equation="x_1,x_2,\cdots,x_n" contenteditable="false"><span></span><span></span></span>为来自该样本的具体数值,则样本联合概率密度为:<br><span class="equation-text" data-index="7" data-equation="\prod_{i=1}^{n}f(x_i;\theta)" contenteditable="false"><span></span><span></span></span><br>若以<span class="equation-text" data-index="8" data-equation="\theta" contenteditable="false"><span></span><span></span></span>为变量则有:<br><span class="equation-text" data-index="9" data-equation="L(x_1,x_2,\cdots,x_n;\theta)=\prod_{i=1}^{n}f(x_i;\theta)" contenteditable="false"><span></span><span></span></span><br>该函数称为样本的<font color="#ff0000">似然函数</font>(注意该函数中<span class="equation-text" data-index="10" data-equation="x_1,x_2,\cdots,x_n" contenteditable="false"><span></span><span></span></span>都是已知的样本值,它们都是常数)。令该函数取得最大值的<span class="equation-text" data-index="11" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>:<br><span class="equation-text" data-index="12" data-equation="L(x_1,x_2,\cdots,x_n;\hat\theta)=\max_{\theta\in\Theta}L(x_1,x_2,\cdots,x_n;\theta)" contenteditable="false"><span></span><span></span></span><br>称这个<span class="equation-text" data-index="13" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>为参数<span class="equation-text" data-index="14" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">最大似然估计值</font>,因为这个<span class="equation-text" data-index="15" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>只与<span class="equation-text" data-index="16" data-equation="x_1,x_2,\cdots,x_n" contenteditable="false"><span></span><span></span></span>有关,所以也记作<span class="equation-text" data-index="17" data-equation="\hat\theta(x_1,x_2,\cdots,x_n)" contenteditable="false"><span></span><span></span></span>。对应的估计量<span class="equation-text" data-index="18" data-equation="\hat\theta(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>称为<font color="#ff0000">最大似然估计量</font>。
7.2 点估计的优劣
一致性
<span style="color: rgb(0, 0, 0); font-family: "Times New Roman", -apple-system, BlinkMacSystemFont, "Segoe UI", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "Helvetica Neue", Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; font-size: 15px;">估计量必须要满足</span><span style="font-family: "Times New Roman", -apple-system, BlinkMacSystemFont, "Segoe UI", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "Helvetica Neue", Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; font-size: 15px;"><font color="#ff0000">一致性</font></span>
设<span class="equation-text" data-index="0" data-equation="\hat\theta=\hat\theta(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>为总体分布的一个未知参数<span class="equation-text" data-index="1" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的点估计,如果对于任意的<span class="equation-text" data-index="2" data-equation="\epsilon > 0" contenteditable="false"><span></span><span></span></span>,始终有:<br><span class="equation-text" data-index="3" data-equation="\lim_{n\to\infty} P\left(|\hat\theta-\theta| < \epsilon\right)=1" contenteditable="false"><span></span><span></span></span><br>则称<span class="equation-text" data-index="4" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>为<span class="equation-text" data-index="5" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">一致估计</font>(也称为相合估计),或者说<span class="equation-text" data-index="6" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>具有<font color="#ff0000">一致性</font>(也称为相合性)。
一致性是对估计量最基本的要求
因为抽取样本的时候我们并不能控制到底抽到什么样本值,唯一可能可控的是样本容量(有些情况下连样本容量都不能随意控制,比如地震的样本)。所以人们希望在样本容量增大时,估计的精度可以不断地提高。
无偏性<br>
定义
若估计量<span class="equation-text" data-index="0" data-equation="\hat\theta=\hat\theta(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>的数学期望<span class="equation-text" data-index="1" data-equation="E(\hat\theta)" contenteditable="false"><span></span><span></span></span>存在,且对于任意<span class="equation-text" data-index="2" data-equation="\theta\in\Theta" contenteditable="false"><span></span><span></span></span>有:<br><span class="equation-text" data-index="3" data-equation="E(\hat\theta)=\theta" contenteditable="false"><span></span><span></span></span><br>则称<span class="equation-text" data-index="4" data-equation="\hat\theta" contenteditable="false"><span></span><span></span></span>是<span class="equation-text" contenteditable="false" data-index="5" data-equation="\theta"><span></span><span></span></span>的<font color="#ff0000">无偏估计量</font>,或者说该估计量具有<font color="#ff0000">无偏性</font>。
有效性
设估计量<span class="equation-text" data-index="0" data-equation="\hat\theta_1=\hat\theta_1(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>与<span class="equation-text" data-index="1" data-equation="\hat\theta_2=\hat\theta_2(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>都是无偏估计量,若对于任意<span class="equation-text" contenteditable="false" data-index="2" data-equation="\theta\in\Theta"><span></span><span></span></span>有:<br><span class="equation-text" data-index="3" data-equation="Var(\hat\theta_1)\le Var(\hat\theta_2)" contenteditable="false"><span></span><span></span></span><br>且至少对于某一个<span class="equation-text" data-index="4" data-equation="\theta\in\Theta" contenteditable="false"><span></span><span></span></span>上式中的不等号成立,则称<span class="equation-text" data-index="5" data-equation="\hat\theta_1" contenteditable="false"><span></span><span></span></span>相对<span class="equation-text" data-index="6" data-equation="\hat\theta_2" contenteditable="false"><span></span><span></span></span>而言更<font color="#ff0000">有效</font>。
7.3 区间估计
置信区间
设总体<span class="equation-text" contenteditable="false" data-index="0" data-equation="X"><span></span><span></span></span>的分布函数含有一个未知参数<span class="equation-text" data-index="1" data-equation="\theta\in\Theta" contenteditable="false"><span></span><span></span></span>(<span class="equation-text" data-index="2" data-equation="\Theta" contenteditable="false"><span></span><span></span></span>为<span class="equation-text" data-index="3" data-equation="\theta" contenteditable="false"><span></span><span></span></span>的可能取值范围),对于给定值<span class="equation-text" data-index="4" data-equation="\alpha,0 < \alpha < 1" contenteditable="false"><span></span><span></span></span>,若由来自<span class="equation-text" data-index="5" data-equation="X" contenteditable="false"><span></span><span></span></span>的样本<span class="equation-text" data-index="6" data-equation="X_1,X_2,\cdots,X_n" contenteditable="false"><span></span><span></span></span>确定的两个统计量<span class="equation-text" data-index="7" data-equation="\underline{\theta}=\underline{\theta}(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="8" data-equation="\overline{\theta}=\overline{\theta}(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>,对于任意<span class="equation-text" data-index="9" data-equation="\theta\in\Theta" contenteditable="false"><span></span><span></span></span>满足:<br><span class="equation-text" data-index="10" data-equation="P(\underline{\theta}\le\theta\le\overline{\theta})\ge 1-\alpha" contenteditable="false"><span></span><span></span></span><br>则称随机区间<span class="equation-text" data-index="11" data-equation="(\underline{\theta},\overline{\theta})" contenteditable="false"><span></span><span></span></span>是\theta的置信水平为<span class="equation-text" data-index="12" data-equation="1-\alpha" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">置信区间</font>,<span class="equation-text" data-index="13" data-equation="\underline{\theta}" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="14" data-equation="\overline{\theta}" contenteditable="false"><span></span><span></span></span>分别称为<font color="#ff0000">置信下限</font>和<font color="#ff0000">置信上限</font>,<span class="equation-text" data-index="15" data-equation="1-\alpha" contenteditable="false"><span></span><span></span></span>称为<font color="#ff0000">置信水平</font>
7.4 正态总体均值的区间估计 <br>
7.5 正态总体方差的区间估计
7.6 两个正态总体均值差的置信区间
7.7 两个正态总体方差比的置信区间
7.8 单侧置信区间
8 假设检验
8.1 假设检验的基本概念与方法
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c} \hline \quad \quad &\quad H_0为真\quad&\quad H_1为真\quad\\ \hline \\ \quad 拒绝H_0 \quad& \quad\color{Salmon}{第一类错误}\quad & \quad正确决定\quad\\ 接受H_0 & 正确决定 & \color{Salmon}{第二类错误}\\ \\ \hline\end{array}"><span></span><span></span></span>
8.2 正态总体下的假设检验
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c} \hline \quad 原假设\quad &\quad 备择假设\quad&\quad 条件\quad&\quad 统计量\quad&\quad 拒绝域\quad\\ \hline \\ \begin{aligned}\mu=\mu_0\\\mu\le\mu_0\\\mu\ge\mu_0\end{aligned} & \begin{aligned}\mu\ne\mu_0\\\mu > \mu_0\\\mu < \mu_0\end{aligned} & \begin{aligned}\sigma^2\\已知\end{aligned} & \begin{aligned}Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\\\sim N(0,1)\end{aligned} & \begin{aligned}|Z| \ge z_{\alpha/2}\\Z\ge z_\alpha\\Z\le -z_\alpha\end{aligned}\\ \\ \hline \\ \begin{aligned}\mu=\mu_0\\\mu\le\mu_0\\\mu\ge\mu_0\end{aligned} & \begin{aligned}\mu\ne\mu_0\\\mu > \mu_0\\\mu < \mu_0\end{aligned} & \begin{aligned}\sigma^2\\未知\end{aligned} & \begin{aligned}T=\frac{\overline{X}-\mu_0}{S/\sqrt{n}}\\\sim t(n-1)\end{aligned} & \begin{aligned}|T| \ge t_{\alpha/2}(n-1)\\T\ge t_\alpha(n-1)\\T\le -t_\alpha(n-1)\end{aligned}\\ \\ \hline \hline \\ \begin{aligned}\sigma^2=\sigma^2_0\\\sigma^2\le\sigma^2_0\\\sigma^2\ge\sigma^2_0\end{aligned} & \begin{aligned}\sigma^2\ne\sigma^2_0\\\sigma^2 > \sigma^2_0\\\sigma^2 < \sigma^2_0\end{aligned} & \begin{aligned}\mu\\已知\end{aligned} & \begin{aligned}\chi^2=\frac{1}{\sigma_0^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\\\sim \chi^2(n)\end{aligned} & \begin{aligned}\chi^2 \le \chi^2_{1-\alpha/2}(n)或\\\chi^2 \ge \chi^2_{\alpha/2}(n)\\\chi^2 \ge \chi^2_{\alpha}(n)\\\chi^2 \le \chi^2_{1-\alpha}(n)\end{aligned}\\ \\ \hline \\ \begin{aligned}\sigma^2=\sigma^2_0\\\sigma^2\le\sigma^2_0\\\sigma^2\ge\sigma^2_0\end{aligned} & \begin{aligned}\sigma^2\ne\sigma^2_0\\\sigma^2 > \sigma^2_0\\\sigma^2 < \sigma^2_0\end{aligned} & \begin{aligned}\mu\\未知\end{aligned} & \begin{aligned}\chi^2=\frac{(n-1) S^{2}}{\sigma_0^{2}}\\\sim \chi^2(n-1)\end{aligned} & \begin{aligned}\chi^2 \le \chi^2_{1-\alpha/2}(n-1)或\\\chi^2 \ge \chi^2_{\alpha/2}(n-1)\\\chi^2 \ge \chi^2_{\alpha}(n-1)\\\chi^2 \le \chi^2_{1-\alpha}(n-1)\end{aligned}\\ \\ \hline\end{array}"><span></span><span></span></span>
8.3 两个正态总体均值与方差的假设检验
8.4 整体分布函数的假设检验
1 随机事件及其概率
1.1 随机试验与随机事件
确定性现象和随机现象<br>
在一定条件下<font color="#ff0000">必然</font>发生的现象称为<font color="#ff0000">确定性现象</font>
在一定条件下<font color="#ff0000">可能</font>出现也可能不出现的现象称为<font color="#ff0000">随机现象</font><br>
随机试验与样本空间<br>
在概率论中,把具有以下三个特征的试验称<br>为<font color="#ff0000">随机试验</font>(random experiment)
可以在相同的条件下重复地进行
每次试验的可能结果不止一个,并且能事<br>先明确试验的所有可能结果<br>
进行一次试验之前不能确定哪一个结果<br>会出现<br>
随机试验 <span class="equation-text" data-index="0" data-equation="E" contenteditable="false"><span></span><span></span></span> 的所有可能结果组成的集合称为 <span class="equation-text" data-index="1" data-equation="E" contenteditable="false"><span></span><span></span></span> 的<font color="#ff0000">样本空间</font>(sample space), 记为<span class="equation-text" data-index="2" data-equation="\Omega" contenteditable="false"><span></span><span></span></span>或<span class="equation-text" data-index="3" data-equation=" S" contenteditable="false"><span></span><span></span></span>
随机事件
随机试验 <span class="equation-text" data-index="0" data-equation="E" contenteditable="false"><span></span><span></span></span> 的样本空间 Ω 的子集称为 <span class="equation-text" data-index="1" data-equation="E" contenteditable="false"><span></span><span></span></span> 的<font color="#ff0000">随机事件</font>, 简称事件
基本事件
由一个样本点组成的单点集<br>
复合事件
必然事件
试验中必然会出现的结果.记为Ω
不可能事件
试验中不可能出现的结果.记为<span class="equation-text" contenteditable="false" data-index="0" data-equation="\varnothing"><span></span><span></span></span>
1.2 事件间关系及运算
事件的运算
并运算:<span class="equation-text" contenteditable="false" data-index="0" data-equation="A∪B=\{x|x∈A或x∈B\}"><span></span><span></span></span>
交运算:<span class="equation-text" contenteditable="false" data-index="0" data-equation="A∩B=\{x|x∈且x∈B\}"><span></span><span></span></span>
差运算:<span class="equation-text" contenteditable="false" data-index="0" data-equation="A-B=\{x|x∈A且x∉B\}"><span></span><span></span></span>
补运算:如果<span class="equation-text" data-index="0" data-equation="A=Ω-B" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="1" data-equation="B" contenteditable="false"><span></span><span></span></span>为<span class="equation-text" data-index="2" data-equation="A" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">补</font>
性质<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c|c} \hline \quad\quad&\quad 类比\quad&\quad 改写 \quad\\ \hline \\ \quad 并 \quad&\quad +\quad&\quad A\cup B=A+B \quad\\ \quad 交 \quad&\quad \times\quad&\quad A\cap B=AB \quad\\ \quad 差 \quad&\quad -\quad&\quad A-B \quad\\ \\ \hline\end{array}"><span></span><span></span></span><br>
交换律
<span class="equation-text" data-index="0" data-equation="A+B=B+A" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="AB=BA"><span></span><span></span></span>
结合律
<span class="equation-text" data-index="0" data-equation="A+B+C=A+(B+C)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="ABC=A(BC)"><span></span><span></span></span>
分配率
<span class="equation-text" data-index="0" data-equation="(A+B)C=AC+BC" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="1" data-equation="(A-B)C=AC-BC" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="2" data-equation="(A∩B)∪C=(A∪C)∩(B∪C)"><span></span><span></span></span>
摩根定律
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{A\cup B}=\overline{A}\cap\overline{B}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{A\cap B}=\overline{A}\cup\overline{B}"><span></span><span></span></span>
事件的关系
事件之间的关系
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c|c} \hline \\ \quad 包含 \quad&\quad A\subseteq B\quad 或\quad B\subseteq A\quad\\ \quad 相等 \quad&\quad A\subseteq B\quad 且\quad B\subseteq A\quad\\ \quad 相交 \quad&\quad A\cap B\ne\varnothing\quad\\ \quad 互斥 \quad&\quad A\cap B=\varnothing\quad\\ \quad 对立 \quad&\quad A=\overline{B}\quad\\ \\ \hline\end{array}"><span></span><span></span></span>
1.3 随机事件的概率
频率
定义
在相同的条件下进行<span class="equation-text" data-index="0" data-equation="N" contenteditable="false"><span></span><span></span></span>次试验,在这<span class="equation-text" data-index="1" data-equation="N" contenteditable="false"><span></span><span></span></span>次试验中事件<span class="equation-text" data-index="2" data-equation="A" contenteditable="false"><span></span><span></span></span>发生的次数<span class="equation-text" data-index="3" data-equation="n" contenteditable="false"><span></span><span></span></span>称为事件<span class="equation-text" data-index="4" data-equation="A" contenteditable="false"><span></span><span></span></span>发生的频数。比值<span class="equation-text" data-index="5" data-equation="\frac{n}{N}" contenteditable="false"><span></span><span></span></span>称为事件<span class="equation-text" contenteditable="false" data-index="6" data-equation="A"><span></span><span></span></span>发生的频率,并记成<span class="equation-text" data-index="7" data-equation="f_N(A)=\frac{n}{N}" contenteditable="false"><span></span><span></span></span>。<br>
性质
<span class="equation-text" contenteditable="false" data-index="0" data-equation="0 \leq f_{N}(A) \leq 1"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f_{N}(\Omega)=1, f_{N}(\varnothing)=0"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="A,B"><span></span><span></span></span>互斥时,<span class="equation-text" data-index="1" data-equation="f_N(A\cup B)=f_N(A)+f_N(B)" contenteditable="false"><span></span><span></span></span>
概率的统计定义<br>
在相同的条件下进行<span class="equation-text" data-index="0" data-equation="N" contenteditable="false"><span></span><span></span></span>次试验,事件<span class="equation-text" data-index="1" data-equation="A" contenteditable="false"><span></span><span></span></span>在这<span class="equation-text" data-index="2" data-equation="N" contenteditable="false"><span></span><span></span></span>次试验中发生了<span class="equation-text" data-index="3" data-equation="n" contenteditable="false"><span></span><span></span></span>次,如果当<span class="equation-text" data-index="4" data-equation="N" contenteditable="false"><span></span><span></span></span>增大时,事件发生的频率<span class="equation-text" data-index="5" data-equation="\frac{n}{N}" contenteditable="false"><span></span><span></span></span>稳定在某一常数<span class="equation-text" data-index="6" data-equation="p" contenteditable="false"><span></span><span></span></span>附近摆动,就称常数<span class="equation-text" data-index="7" data-equation="p" contenteditable="false"><span></span><span></span></span>为事件<span class="equation-text" data-index="8" data-equation="A" contenteditable="false"><span></span><span></span></span>发生的概率,记为:<span class="equation-text" contenteditable="false" data-index="9" data-equation="P(A)=p"><span></span><span></span></span>
1.4 古典概型
定义
满足下面两个特点的随机试验称为<font color="#ff0000">等可能概型</font>或<font color="#ff0000">古典概型</font>
(1)样本空间有限
(2)样本点的出现等可能
计算
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}&P(A)=\frac{m}{n}=\frac{A \text { 所包含样本点的个数 }}{\text { 样本点总数 }} \text {. } \\&m=N(A), n=N(\Omega) \text {. }\end{aligned}"><span></span><span></span></span>
计算的核心知识点(复习中学的知识)
数清楚<span class="equation-text" contenteditable="false" data-index="0" data-equation="A"><span></span><span></span></span>和Ω里面有多少样本点,这称为<font color="#fdb813">计数</font>
乘法原理
如果某件事需经<span class="equation-text" data-index="0" data-equation="k" contenteditable="false"><span></span><span></span></span>个步骤才能完成,做第<span class="equation-text" data-index="1" data-equation="1" contenteditable="false"><span></span><span></span></span>步有<span class="equation-text" data-index="2" data-equation="m_1" contenteditable="false"><span></span><span></span></span>种方法,做第<span class="equation-text" data-index="3" data-equation="2" contenteditable="false"><span></span><span></span></span>步有<span class="equation-text" data-index="4" data-equation="m_2" contenteditable="false"><span></span><span></span></span>种方法,<span class="equation-text" data-index="5" data-equation="\cdots\cdots," contenteditable="false"><span></span><span></span></span>做第<span class="equation-text" data-index="6" data-equation="k" contenteditable="false"><span></span><span></span></span>步有<span class="equation-text" data-index="7" data-equation="m_k" contenteditable="false"><span></span><span></span></span>种方法,则完成这个事件总共有<span class="equation-text" contenteditable="false" data-index="8" data-equation="m_1\times m_2\times\cdots\times m_k"><span></span><span></span></span>种方法。<br>
加法原理
如果某件事有<span class="equation-text" data-index="0" data-equation="k" contenteditable="false"><span></span><span></span></span>种办法去完成,第<span class="equation-text" data-index="1" data-equation="1" contenteditable="false"><span></span><span></span></span>种办法有<span class="equation-text" data-index="2" data-equation="m_1" contenteditable="false"><span></span><span></span></span>种方法,第<span class="equation-text" data-index="3" data-equation="2" contenteditable="false"><span></span><span></span></span>种办法有<span class="equation-text" data-index="4" data-equation="m_2" contenteditable="false"><span></span><span></span></span>种方法,<span class="equation-text" data-index="5" data-equation="\cdots\cdots," contenteditable="false"><span></span><span></span></span>第<span class="equation-text" data-index="6" data-equation="k" contenteditable="false"><span></span><span></span></span>种办法有<span class="equation-text" data-index="7" data-equation="m_k" contenteditable="false"><span></span><span></span></span>种方法,则完成这个事件总共有<span class="equation-text" contenteditable="false" data-index="8" data-equation="m_1+m_2+\cdots+m_k"><span></span><span></span></span>种方法。<br>
排列
从<span class="equation-text" data-index="0" data-equation="n" contenteditable="false"><span></span><span></span></span>个不同元素中任取<span class="equation-text" data-index="1" data-equation="r(r\leq n)" contenteditable="false"><span></span><span></span></span>个元素排成一排(不能重复选择元素,要考虑元素的先后顺序),称为一个<font color="#ff0000">排列</font>(Permutation)。按乘法原理,此种排列共有<span class="equation-text" data-index="2" data-equation="n\times (n-1)\times\cdots\times(n-r+1)" contenteditable="false"><span></span><span></span></span>种,记作<span class="equation-text" data-index="3" data-equation="P_{n}^{r}" contenteditable="false"><span></span><span></span></span>,可以读作:<span class="equation-text" data-index="4" data-equation="n\ \ \text{Pick}\ \ r" contenteditable="false"><span></span><span></span></span>。若<span class="equation-text" data-index="5" data-equation="r=n" contenteditable="false"><span></span><span></span></span>,称为<font color="#ff0000">全排列</font>,全排列数共有<span class="equation-text" data-index="6" data-equation="n!" contenteditable="false"><span></span><span></span></span>个,记为<span class="equation-text" contenteditable="false" data-index="7" data-equation="P_n"><span></span><span></span></span>。<br><br>
组合
从<span class="equation-text" data-index="0" data-equation="n" contenteditable="false"><span></span><span></span></span>个不同元素中任取<span class="equation-text" data-index="1" data-equation="r(r\leq n)" contenteditable="false"><span></span><span></span></span>个元素并成一组(不区分顺序),称为一个<font color="#ff0000">组合</font>(Combination),组合总数为:<span class="equation-text" data-index="2" data-equation="C_n^r={n\choose r}=\frac{P_{n}^{r}}{r!}=\frac{n!}{r!(n-r)!}" contenteditable="false"><span></span><span></span></span>可以读作:<span class="equation-text" contenteditable="false" data-index="3" data-equation="n\ \ \text{Choose}\ \ r"><span></span><span></span></span><br>
1.5 几何概型
定义
当随机试验的样本空间是某个区域,并且任意一点落在度量 (长度、 面积、体积) 相同的子区域是等可能的,则事件 <span class="equation-text" contenteditable="false" data-index="0" data-equation="A"><span></span><span></span></span> 的概率可定义为<span class="equation-text" data-index="1" data-equation="P(A)=\frac{S_{A}}{S_{\Omega}}" contenteditable="false"><span></span><span></span></span>
说明
当古典概型的试验结果为连续无穷多个时,就归结为几何概型
1.6 概率公理化定义
<font color="#ff0000">概率</font>的定义:已知某样本空间<span class="equation-text" data-index="0" data-equation="\Omega" contenteditable="false"><span></span><span></span></span>,对于其中任一事件<span class="equation-text" data-index="1" data-equation="A" contenteditable="false"><span></span><span></span></span>,定义函数<span class="equation-text" data-index="2" data-equation="P" contenteditable="false"><span></span><span></span></span>,满足<font color="#ff0000">三大公理,</font>则<span class="equation-text" data-index="3" data-equation="P" contenteditable="false"><span></span><span></span></span>称为<font color="#ff0000">概率函数</font>,<span class="equation-text" data-index="4" data-equation="P(A)" contenteditable="false"><span></span><span></span></span>称为事件<span class="equation-text" data-index="5" data-equation="A" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">概率</font>。
<font color="#ff0000">三大公理</font>
非负性公理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(A)\ge0"><span></span><span></span></span>
举例子
规范性公理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(Ω) = 1"><span></span><span></span></span>
可加性公理
设<span class="equation-text" contenteditable="false" data-index="0" data-equation="A_1,A_2,..."><span></span><span></span></span>为两两不相容事件,即:<span class="equation-text" data-index="1" data-equation="A_i∩A_j=∅(i≠j)" contenteditable="false"><span></span><span></span></span>,有:<span class="equation-text" data-index="2" data-equation="P(A_1∪A_2∪...)=P(A_1)+P(A_2)+..." contenteditable="false"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(A∪B)=P(A)+P(B)"><span></span><span></span></span>
意义
公理中出现的概率函数<span class="equation-text" data-index="0" data-equation="P" contenteditable="false"><span></span><span></span></span>是把样本空间<span class="equation-text" data-index="1" data-equation="Ω" contenteditable="false"><span></span><span></span></span>中的事件,<br>映射为[0,1]之间的实数<br>
<font color="#ff0000">解决三大流派的纠纷</font><br><br>
举例子
抛掷硬币:正面的概率=<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(\{正面\})"><span></span><span></span></span><br><br><span class="equation-text" data-index="1" data-equation="\begin{array}{c|c} \hline \quad\quad&\quad 方法\quad&\quad 概率\quad\\ \hline \\ \quad \color{Orange}{频率派}\quad&\quad 多次实验后得到\quad&\quad P(\{正面\})\approx 0.51\quad\\ \quad \color{ForestGreen}{古典派}\quad&\quad 等概率\quad&\quad P(\{正面\})=P(\{反面\})\quad\\ \quad \color{Magenta}{主观派}\quad&\quad 认为可能作弊\quad&\quad P(\{正面\})=0.7\quad\\ \\\hline\end{array}" contenteditable="false"><span></span><span></span></span>
性质
空集的概率是零
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(\varnothing)=0"><span></span><span></span></span>
概率的有限可加性
若是<span class="equation-text" data-index="0" data-equation="A_{1}, A_{2}, \cdots, A_{n}" contenteditable="false"><span></span><span></span></span>两两互不相容的事件,则有:<span class="equation-text" contenteditable="false" data-index="1" data-equation="P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right)"><span></span><span></span></span>
任意事件<span class="equation-text" contenteditable="false" data-index="0" data-equation="A"><span></span><span></span></span>,有
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(\bar{A})=1-P(A)"><span></span><span></span></span>
包含的概率
设<span class="equation-text" data-index="0" data-equation="A、B" contenteditable="false"><span></span><span></span></span>为两个事件,若<span class="equation-text" data-index="1" data-equation="A" contenteditable="false"><span></span><span></span></span>是<span class="equation-text" contenteditable="false" data-index="2" data-equation="B"><span></span><span></span></span>的子集,则可推出<br>
(1) <span class="equation-text" contenteditable="false" data-index="0" data-equation="P(B-A)=P(B)-P(A)"><span></span><span></span></span>
(2) <span class="equation-text" contenteditable="false" data-index="0" data-equation="P(A)≤P(B)"><span></span><span></span></span>
任意两个事件<span class="equation-text" contenteditable="false" data-index="0" data-equation="A,B"><span></span><span></span></span>,有
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(A-B)=P(A)-P(A B)"><span></span><span></span></span>
加法公式
对于任意两个事件,有:<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(A∪B)=P(A)+P(B)-P(A∩B)"><span></span><span></span></span>
1.7 条件概率与乘法公式
条件概率
定义
设<span class="equation-text" data-index="0" data-equation="A" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="1" data-equation="B" contenteditable="false"><span></span><span></span></span>是样本空间<span class="equation-text" data-index="2" data-equation="Ω" contenteditable="false"><span></span><span></span></span>中的两事件,若<span class="equation-text" data-index="3" data-equation="P(B) > 0" contenteditable="false"><span></span><span></span></span>,则称:<br><span class="equation-text" data-index="4" data-equation="P(A|B)=P(A∩ B)/P(B)" contenteditable="false"><span></span><span></span></span><br>为“假设条件为<span class="equation-text" data-index="5" data-equation="B" contenteditable="false"><span></span><span></span></span>时的<span class="equation-text" data-index="6" data-equation="A" contenteditable="false"><span></span><span></span></span>的概率”,简称<font color="#ff0000">条件概率</font>。也常写作:<br><span class="equation-text" data-index="7" data-equation="P(A|B)=P(AB)/P(B)" contenteditable="false"><span></span><span></span></span>
条件概率的三大公理
非负性公理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(A|B)≥ 0"><span></span><span></span></span>
规范性公理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P(Ω|B) = 1"><span></span><span></span></span>
可加性公理
设<span class="equation-text" data-index="0" data-equation="A_1、A_2、\cdots" contenteditable="false"><span></span><span></span></span>为两两不相容的事件,即<span class="equation-text" data-index="1" data-equation="A_i\cap A_j=\varnothing(i\ne j)" contenteditable="false"><span></span><span></span></span>,有:<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="P\left(\bigcup_{n=1}^{\infty}A_n|B\right)=\sum_{n=1}^{\infty}P\left(A_n|B\right)"><span></span><span></span></span>
乘法公式
根据条件概率定义得到
<span class="equation-text" data-index="0" data-equation="P(B)>0" contenteditable="false"><span></span><span></span></span>,则:<span class="equation-text" contenteditable="false" data-index="1" data-equation="P(AB)=P(B)P(A|B)"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="P(A)>0" contenteditable="false"><span></span><span></span></span>,则:<span class="equation-text" contenteditable="false" data-index="1" data-equation="P(AB)=P(A)P(B|A)"><span></span><span></span></span>
事件的相互独立性
独立性的定义
对于两个随机事件<span class="equation-text" data-index="0" data-equation="A、B" contenteditable="false"><span></span><span></span></span>,如果满足:<br><span class="equation-text" data-index="1" data-equation="P(AB)=P(A)P(B)" contenteditable="false"><span></span><span></span></span><br>则称A与B<font color="#ff0000">相互独立</font>,或简称A与B<font color="#ff0000">独立</font>,否则称A与B<font color="#fdb813">不独立</font>或<font color="#fdb813">相依</font>。
多个事件相互独立
两两独立≠相互独立
1.8 伯努利概型<br>
伯努利分布
某样本空间只包含两个元素,<span class="equation-text" data-index="0" data-equation="Ω=\{w_1,w_2\}" contenteditable="false"><span></span><span></span></span>,在其上定义随机变量<span class="equation-text" data-index="1" data-equation="X" contenteditable="false"><span></span><span></span></span>:<br><span class="equation-text" data-index="2" data-equation="X=X(\omega)=\begin{cases}1,&\omega=\omega_1\\0,&\omega=\omega_2\end{cases}" contenteditable="false"><span></span><span></span></span><br>若<span class="equation-text" data-index="3" data-equation="0\le p\le 1" contenteditable="false"><span></span><span></span></span>时,有:<br><span class="equation-text" data-index="4" data-equation="p(1)=P(X=1)=p" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="5" data-equation="p(0)=P(X=0)=1-p" contenteditable="false"><span></span><span></span></span><br>或写作:<br><span class="equation-text" contenteditable="false" data-index="6" data-equation="P(X=x)=p(x)=\begin{cases}p,&x=1\\1-p,&x=0 \end{cases}"><span></span><span></span></span><br>则此概率分布称作<font color="#ff0000">0-1分布</font>,也称作<font color="#ff0000">伯努利分布</font><br>
二项分布
在数学中,类似于扔一次硬币这样的“是非题”称为一次<font color="#ff0000">伯努利试验</font>,<br>像上面这样独立地重复扔<span class="equation-text" contenteditable="false" data-index="0" data-equation="n"><span></span><span></span></span>次硬币(做同样的“是非题”<span class="equation-text" data-index="1" data-equation="n" contenteditable="false"><span></span><span></span></span>次),就称为<font color="#ff0000"><span class="equation-text" data-index="2" data-equation="n" contenteditable="false"><span></span><span></span></span>重伯努利试验</font><br>
对于<span class="equation-text" data-index="0" data-equation="n" contenteditable="false"><span></span><span></span></span>重伯努利实验,如果每次得到“是”的概率为<span class="equation-text" data-index="1" data-equation="p" contenteditable="false"><span></span><span></span></span>,设随机变量:<br>X=得到“是”的次数,则称:<br><span class="equation-text" data-index="2" data-equation="p(k)=P(X=k)={n\choose k}p^k(1-p)^{n-k},\quad k=0,1,\cdots,n" contenteditable="false"><span></span><span></span></span><br>为随机变量<span class="equation-text" contenteditable="false" data-index="3" data-equation="X"><span></span><span></span></span>的<font color="#ff0000">二项分布</font>,也可以记作:<br><span class="equation-text" data-index="4" data-equation="X∽b(n,p)" contenteditable="false"><span></span><span></span></span><br>当<span class="equation-text" data-index="5" data-equation="n=1" contenteditable="false"><span></span><span></span></span>的时候,对应的就是<font color="#ff0000">伯努利分布</font>,所以伯努利分布也可以记作<span class="equation-text" data-index="6" data-equation="b(1,p)" contenteditable="false"><span></span><span></span></span><br>
1.9 全概率公式与逆概率公式
<font color="#ff0000">全概率公式</font>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="C=AC+BC"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned}P(C) &=P(AC)+P(BC)\\ \\ &=P(A)P(C|A)+P(B)P(C|B)\end{aligned}"><span></span><span></span></span><br>
逆概率公式(贝叶斯公式)
贝叶斯定理
对于随机事件<span class="equation-text" data-index="0" data-equation="A、B" contenteditable="false"><span></span><span></span></span>,若<span class="equation-text" data-index="1" data-equation="P(B) \ne 0" contenteditable="false"><span></span><span></span></span>,有:<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="P(A|B)=(P(A)/P(B))×P(B|A)"><span></span><span></span></span>
设<span class="equation-text" data-index="0" data-equation="A_1、A_2、\cdots、A_n" contenteditable="false"><span></span><span></span></span>为样本空间<span class="equation-text" data-index="1" data-equation="\Omega" contenteditable="false"><span></span><span></span></span>的一个分割,则有:<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="\begin{aligned} P(A_i|B) &=\frac{P(BA_i)}{P(B)}\\ \\ &=\frac{P(B|A_i)}{P(B)}P(A_i)\\ \\ &=\frac{P(B|A_i)}{\displaystyle\sum_{i=1}^{n}P(A_i)P(B|A_i)}P(A_i)\end{aligned}"><span></span><span></span></span><br>
2 随机变量及其分布
2.1 随机变量
随机变量的定义
定义在样本空间<span class="equation-text" data-index="0" data-equation="Ω" contenteditable="false"><span></span><span></span></span>上的实值函数:<br><span class="equation-text" data-index="1" data-equation="X=X(w),w∈Ω" contenteditable="false"><span></span><span></span></span><br>称为<font color="#ff0000">随机变量</font>
<span class="equation-text" data-index="0" data-equation="“X≤x” = \{w:X(w)≤x\}" contenteditable="false"><span></span><span></span></span>,即<font color="#ff0000">一切满足</font><span class="equation-text" data-index="1" data-equation="X(w)≤x" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000"><span class="equation-text" data-index="2" data-equation="w" contenteditable="false"><span class="katex"></span></span>组成</font>的集合
离散随机变量
随机变量的函数值是实数轴上孤立的点(有限个或者无限个),则称为<font color="#ff0000">离散随机变量</font>
连续随机变量
如果随机变量的函数值是实数轴上某个区间上所有的值(也可以是<span class="equation-text" contenteditable="false" data-index="0" data-equation="(-\infty, +\infty)"><span></span><span></span></span>区间),则称为<font color="#ff0000">连续随机变量</font>
2.2 离散型随机变量及其概率分布
概率质量函数(PMF)
设<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>为离散型随机变量,其全部可能值为<span class="equation-text" data-index="1" data-equation="x_1,x_2,...," contenteditable="false"><span></span><span></span></span>则:<br><span class="equation-text" data-index="2" data-equation="p_i=p(x_i)=P(X=x_i), (i=1,2,...)" contenteditable="false"><span></span><span></span></span><br>称为<span class="equation-text" contenteditable="false" data-index="3" data-equation="X"><span></span><span></span></span>的<font color="#ff0000">概率质量函数</font>(Probability Mass Function,缩写为PMF)
还可写作列表的形式:<br><span class="equation-text" data-index="0" data-equation="\begin{array}{c|cccccccc} \quad X \quad & \quad x_1 \quad & \quad x_2 \quad & \quad x_3 \quad & \quad \cdots \quad \\ \hline \quad P \quad & \quad p(x_1) \quad & \quad p(x_2) \quad & \quad p(x_3) \quad & \quad \cdots \quad\end{array}" contenteditable="false"><span></span><span></span></span><br>所以也称为<span class="equation-text" contenteditable="false" data-index="1" data-equation="X"><span></span><span></span></span>的<font color="#ff0000">概率分布列</font>,或者简称为<font color="#ff0000">概率分布</font>。<br>有时候也如下表示:<span class="equation-text" data-index="2" data-equation="X∽ p(x)" contenteditable="false"><span></span><span></span></span>,读作<span class="equation-text" data-index="3" data-equation="X" contenteditable="false"><span></span><span></span></span>服从<span class="equation-text" data-index="4" data-equation="p(x)" contenteditable="false"><span></span><span></span></span>的概率分布。
常见的离散随机变量
伯努利分布
某样本空间只包含两个元素,<span class="equation-text" data-index="0" data-equation="Ω=\{w_1,w_2\}" contenteditable="false"><span></span><span></span></span>,在其上定义随机变量<span class="equation-text" data-index="1" data-equation="X" contenteditable="false"><span></span><span></span></span>:<br><span class="equation-text" data-index="2" data-equation="X=X(\omega)=\begin{cases}1,&\omega=\omega_1\\0,&\omega=\omega_2\end{cases}" contenteditable="false"><span></span><span></span></span><br>若<span class="equation-text" data-index="3" data-equation="0\le p\le 1" contenteditable="false"><span></span><span></span></span>时,有:<br><span class="equation-text" data-index="4" data-equation="p(1)=P(X=1)=p" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="5" data-equation="p(0)=P(X=0)=1-p" contenteditable="false"><span></span><span></span></span><br>或写作:<br><span class="equation-text" contenteditable="false" data-index="6" data-equation="P(X=x)=p(x)=\begin{cases}p,&x=1\\1-p,&x=0 \end{cases}"><span></span><span></span></span><br>则此概率分布称作<font color="#ff0000">0-1分布(两点分布)</font>,也称作<font color="#ff0000">伯努利分布</font><br>
二项分布
在数学中,类似于扔一次硬币这样的“是非题”称为一次<font color="#ff0000">伯努利试验</font>,<br>像上面这样独立地重复扔n次硬币(做同样的“是非题”<span class="equation-text" data-index="0" data-equation="n" contenteditable="false"><span></span><span></span></span>次),就称为<font color="#ff0000"><span class="equation-text" contenteditable="false" data-index="1" data-equation="n"><span></span><span></span></span>重伯努利试验</font><br>
对于<span class="equation-text" data-index="0" data-equation="n" contenteditable="false"><span></span><span></span></span>重伯努利实验,如果每次得到“是”的概率为<span class="equation-text" data-index="1" data-equation="p" contenteditable="false"><span></span><span></span></span>,设随机变量:<br>X=得到“是”的次数,则称:<br><span class="equation-text" data-index="2" data-equation="p(k)=P(X=k)={n\choose k}p^k(1-p)^{n-k},\quad k=0,1,\cdots,n" contenteditable="false"><span></span><span></span></span><br>为随机变量<span class="equation-text" contenteditable="false" data-index="3" data-equation="X"><span></span><span></span></span>的<font color="#ff0000">二项分布</font>,也可以记作:<br><span class="equation-text" data-index="4" data-equation="X∽b(n,p)" contenteditable="false"><span></span><span></span></span><br>当<span class="equation-text" data-index="5" data-equation="n=1" contenteditable="false"><span></span><span></span></span>的时候,对应的就是<font color="#ff0000">伯努利分布</font>,所以伯努利分布也可以记作<span class="equation-text" data-index="6" data-equation="b(1,p)" contenteditable="false"><span></span><span></span></span><br>
泊松分布
泊松分布的定义
对于随机变量<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>的概率质量函数:<span class="equation-text" data-index="1" data-equation="P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,2,\cdots" contenteditable="false"><span></span><span></span></span><br>称为随机变量<span class="equation-text" contenteditable="false" data-index="2" data-equation="X"><span></span><span></span></span>的<font color="#ff0000">泊松分布</font>,也可以记为:<span class="equation-text" data-index="3" data-equation="X\sim P(\lambda)" contenteditable="false"><span></span><span></span></span><br>其数学期望和方差为:<span class="equation-text" data-index="4" data-equation="E(X)=\lambda,\quad Var(X)=\lambda" contenteditable="false"><span></span><span></span></span><br>
泊松分布的条件
平稳性
在此时间段<span class="equation-text" contenteditable="false" data-index="0" data-equation="T"><span></span><span></span></span>内,此事件发生的概率相同(在实际应用中大致相同就可以了)<br>
独立性
事件的发生彼此之间独立(或者说,关联性很弱)<br>
普通性
把<span class="equation-text" data-index="0" data-equation="T" contenteditable="false"><span></span><span></span></span>切分成足够小的区间<span class="equation-text" data-index="1" data-equation="\Delta T" contenteditable="false"><span></span><span></span></span>,在<span class="equation-text" data-index="2" data-equation="\Delta T" contenteditable="false"><span></span><span></span></span>内恰好发生两个、或多个事件的可能性为(或者说,几乎为)
超几何分布
设有<span class="equation-text" contenteditable="false" data-index="0" data-equation="N"><span></span><span></span></span>件产品,其中有<span class="equation-text" data-index="1" data-equation="M" contenteditable="false"><span></span><span></span></span>件不合格品,随机抽取<span class="equation-text" data-index="2" data-equation="n" contenteditable="false"><span></span><span></span></span>件产品,设随机变量:<br><span class="equation-text" data-index="3" data-equation="X=随机抽取的n件中有m件不合格品" contenteditable="false"><span></span><span></span></span><br>则其中含有<span class="equation-text" data-index="4" data-equation="m" contenteditable="false"><span></span><span></span></span>件不合格产品的概率为:<br><span class="equation-text" data-index="5" data-equation="P(X=m)=\frac{{M\choose m}{N-M\choose n-m}}{{N\choose n}},m=0,1,\cdots,r" contenteditable="false"><span></span><span></span></span><br>其中<span class="equation-text" data-index="6" data-equation="r=min(M,n)" contenteditable="false"><span></span><span></span></span>。此时称<span class="equation-text" data-index="7" data-equation="X" contenteditable="false"><span></span><span></span></span>服从<font color="#ff0000">超几何分布</font>,可以记作:<br><span class="equation-text" data-index="8" data-equation="X\sim h(n,N,M)" contenteditable="false"><span></span><span></span></span><br>
几何分布
对于<span class="equation-text" data-index="0" data-equation="n" contenteditable="false"><span></span><span></span></span>重伯努利实验,如果每次得到“是”的概率为<span class="equation-text" data-index="1" data-equation="p" contenteditable="false"><span></span><span></span></span>,设随机变量:<br><span class="equation-text" contenteditable="false" data-index="2" data-equation="X"><span></span><span></span></span>=首次得到“是”时进行的试验次数,则称:<br><span class="equation-text" data-index="3" data-equation="p(k)=P(X=k)=(1-p)^{k-1}p,\quad k=1,2,\cdots" contenteditable="false"><span></span><span></span></span><br>为随机变量<font color="#000000"><span class="equation-text" data-index="4" data-equation="X" contenteditable="false"><span></span><span></span></span></font>的<font color="#ff0000">几何分布</font>,也可以记作:<br><span class="equation-text" data-index="5" data-equation="X\sim Ge(p)" contenteditable="false"><span></span><span></span></span><br>其数学期望和方差为:<br><span class="equation-text" data-index="6" data-equation="E(X)=\frac{1}{p},\quad Var(X)=\frac{1-p}{p^2}" contenteditable="false"><span></span><span></span></span>
2.3 连续型随机变量及其概率密度
2.7 概率密度函数(PDF)
定义
如果函数<span class="equation-text" contenteditable="false" data-index="0" data-equation="p(x)"><span></span><span></span></span>满足下列两个条件(对应了概率的三大公理):<br>非负性:<br><span class="equation-text" data-index="1" data-equation="p(x) \ge 0" contenteditable="false"><span></span><span></span></span><br>规范性(暗含了可加性),因为是连续的,所以通过积分相加:<br><span class="equation-text" data-index="2" data-equation="\int_{-\infty}^{+\infty}p(x)\mathrm{d}x=1" contenteditable="false"><span></span><span></span></span><br>则称其为<font color="#ff0000">概率密度函数</font>(Probability Density Function,简写为PDF)。<br>
期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X)=\sum_{i=1}^{\infty}x_ip(x_i)"><span></span><span></span></span><br>
方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Var(X)=E\left[\Big(X-E(X)\Big)^2\right]"><span></span><span></span></span>
累积分布函数(CDF)
<font color="#ff0000">连续随机变量<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span></font>的概率密度函数为<span class="equation-text" data-index="1" data-equation="p(x)" contenteditable="false"><span></span><span></span></span>,则:<span class="equation-text" data-index="2" data-equation="F(x)=P(X \le x)=\int_{-\infty}^{x}p(t)\mathrm{d}t" contenteditable="false"><span></span><span></span></span><br>称为<span class="equation-text" data-index="3" data-equation="X" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">累积分布函数</font>。<br>
常见的连续随机变量
均匀分布
如果连续随机变量<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>的概率密度函数为:<span class="equation-text" data-index="1" data-equation="p(x)=\begin{cases} \frac{1}{b-a}, &a \le x \le b\\ 0, & 其它\end{cases}" contenteditable="false"><span></span><span></span></span><br>则称<span class="equation-text" contenteditable="false" data-index="2" data-equation="X"><span></span><span></span></span>服从区间(a,b)上的<font color="#ff0000">均匀分布</font>,记作<span class="equation-text" data-index="3" data-equation="X\sim U(a,b)" contenteditable="false"><span></span><span></span></span>,其累积分布函数为:<br><span class="equation-text" data-index="4" data-equation="F(x)=\begin{cases} 0,&x < a\\ \frac{x-a}{b-a},&a\le x < b\\ 1,&x \ge b\end{cases}" contenteditable="false"><span></span><span></span></span><br>期望和方差分别为:<br><span class="equation-text" data-index="5" data-equation="E(X)=\frac{a+b}{2},\quad Var(X)=\frac{(b-a)^2}{12}" contenteditable="false"><span></span><span></span></span><br>
指数分布 <br>
指数分布的定义
若随机变量X的概率密度函数为:<br><span class="equation-text" data-index="0" data-equation="p(x)=\begin{cases}\lambda e^{-\lambda x}, & x \ge 0\\0,& x < 0\end{cases}" contenteditable="false"><span></span><span></span></span><br>其中<span class="equation-text" data-index="1" data-equation="\lambda > 0" contenteditable="false"><span></span><span></span></span>,称<span class="equation-text" data-index="2" data-equation="X" contenteditable="false"><span></span><span></span></span>服从<font color="#ff0000">指数分布</font>,也可以记为:<span class="equation-text" data-index="3" data-equation="X\sim Exp(\lambda)" contenteditable="false"><span></span><span></span></span>,累积分布函数为:<br><span class="equation-text" contenteditable="false" data-index="4" data-equation="F(x)=\begin{cases}1-e^{-\lambda x}, & x \ge 0\\0,& x < 0\end{cases}"><span></span><span></span></span><br>
期望和方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X)=\frac{1}{\lambda},\quad Var(X)=\frac{1}{\lambda^2}"><span></span><span></span></span>
性质:无记忆性
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned} P(X>s+t|X > s) &=\frac{P(X>s+t)}{P(X > s)}=\frac{e^{-\lambda (s+t)}}{e^{-\lambda s}}\\ \\ &=e^{-\lambda t}=P(X > t)\end{aligned}"><span></span><span></span></span>
分布之间的关系
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c} \hline \\ \quad 均匀分布\quad&\quad 古典派中的几何概型 \quad\\ \quad 正态分布\quad&\quad 二项分布的另外一种极限 \quad\\ \quad 指数分布\quad&\quad 泊松分布的间隔,连续的几何分布 \quad\\ \\ \hline\end{array}"><span></span><span></span></span>
正态分布
正态分布的定义
如果连续随机变量X的概率密度函数为:<br><span class="equation-text" data-index="0" data-equation="p(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},\quad -\infty < x < +\infty" contenteditable="false"><span></span><span></span></span><br>则称X服从<font color="#ff0000">正态分布</font>(normal distribution),也称作<font color="#ff0000">高斯分布</font>(Gaussian distribution),记作<span class="equation-text" contenteditable="false" data-index="1" data-equation="X\sim N(\mu,\sigma^2)"><span></span><span></span></span>,其累积分布函数为:<br><span class="equation-text" data-index="2" data-equation="F(x)=\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{(t-\mu)^2}{2\sigma^2}}\mathrm{d}t" contenteditable="false"><span></span><span></span></span><br>
中心极限定理
因为要逼近二项分布才引入了正态分布,但随着这个问题研究的深入,发现不光二项分布,很多别的分布最终也会变为正态分布,甚至很多不同的分布混合在一起最终也会变为正态分布……<br>正态分布是这些分布的最终归宿,这是一个很惊人的结论,这就导致正态分布的地位大大提高,基本可以算是概率论的中心。<br>这个结论称为<font color="#ff0000">中心极限定理</font>,它导致的结果是,我们在现实生活中会观察到非常非常多的正态分布
标准正态分布
我们称<span class="equation-text" data-index="0" data-equation="\mu=0、\sigma=1" contenteditable="false"><span></span><span></span></span>时的正态分布N(0,1)为<font color="#ff0000">标准正态分布</font>
重要结论
如果<span class="equation-text" data-index="0" data-equation="X\sim N(\mu, \sigma^2)" contenteditable="false"><span></span><span></span></span>,那么有:<br><span class="equation-text" contenteditable="false" data-index="1" data-equation="aX+b\sim N(a\mu+b, a^2\sigma^2)"><span></span><span></span></span>
上分位点
如果有<span class="equation-text" data-index="0" data-equation="Z\sim N(0,1)" contenteditable="false"><span></span><span></span></span>,如果<span class="equation-text" data-index="1" data-equation="z_\alpha" contenteditable="false"><span></span><span></span></span>满足:<br><span class="equation-text" data-index="2" data-equation="P(Z > z_\alpha) = \alpha,\quad 0 < \alpha < 1" contenteditable="false"><span></span><span></span></span><br>那么称点<span class="equation-text" data-index="3" data-equation="z_\alpha" contenteditable="false"><span></span><span></span></span>为标准正态分布的<font color="#ff0000">上<span class="equation-text" contenteditable="false" data-index="4" data-equation="\alpha"><span></span><span></span></span>分位点</font>。
期望和方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X)=\mu,\quad Var(X)=\sigma^2"><span></span><span></span></span>
2.4 分布函数
累积分布函数(CDF)
设<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>是一个随机变量,<span class="equation-text" data-index="1" data-equation="x" contenteditable="false"><span></span><span></span></span>是任意实数,函数:<span class="equation-text" data-index="2" data-equation="F(x)=P(X \le x)=\sum_{a\le x}p(a)" contenteditable="false"><span></span><span></span></span><br>因为是<font color="#ff0000">把概率分布函数累加起来</font>,所以称为<font color="#ff0000">累积分布函数</font><br>(Cumulative Distribution Function,或者缩写为<font color="#ff0000">CDF</font>),也简称为<font color="#ff0000">分布函数</font>。<br>
举例子:伯努利分布的累积分布函数<br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x)=\begin{cases}0,&x<0\\1-p,&0\le x < 1\\1,&x \ge 1\end{cases}"><span></span><span></span></span>
定义累积分布函数的<font color="#ff0000">理由</font>
定义累积分布函数主要是为了计算上的便利,以下常见计算都可以CDF来完成:<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{array}{c|c} \hline \\ \quad P(X\le a)\quad&\quad F(a) \quad\\ \quad P(X> a)\quad&\quad 1-F(a) \quad\\ \quad P(a_1 < X\le a_2)\quad&\quad F(a_2)-F(a_1) \quad\\ \\ \hline\end{array}"><span></span><span></span></span><br>
2.5 随机变量函数的概率分布
随机变量函数的定理
设<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>是连续随机变量,其概率密度函数为<span class="equation-text" data-index="1" data-equation="p_X(x),Y=g(X)" contenteditable="false"><span></span><span></span></span>是另外一个随机变量。若<span class="equation-text" data-index="2" data-equation="y=g(x)" contenteditable="false"><span></span><span></span></span>严格单调,其反函数<span class="equation-text" data-index="3" data-equation="h(y)" contenteditable="false"><span></span><span></span></span>有连续导函数,则<span class="equation-text" contenteditable="false" data-index="4" data-equation="Y=g(X)"><span></span><span></span></span>的概率密度函数为:<span class="equation-text" data-index="5" data-equation="p_Y(y)=\begin{cases} p_X\left[\ h(y)\ \right]\left|\ h'(y)\ \right|,& a < y < b\\ 0,&其它\end{cases}" contenteditable="false"><span></span><span></span></span>其中:<span class="equation-text" data-index="6" data-equation="a=min\left[\ g(-\infty),\ g(\infty)\ \right],b=max\left[\ g(-\infty),\ g(\infty)\ \right]" contenteditable="false"><span></span><span></span></span>
3 随机向量
3.1 二维随机向量及其分布
二维随机变量
设<span class="equation-text" data-index="0" data-equation="X=X(\omega),Y=Y(\omega)" contenteditable="false"><span></span><span></span></span>是定义在同一样本空间<span class="equation-text" data-index="1" data-equation="\Omega=\{\omega\}" contenteditable="false"><span></span><span></span></span>上的两个随机变量,由它们构成的向量<span class="equation-text" contenteditable="false" data-index="2" data-equation="(X,Y)"><span></span><span></span></span>称为<font color="#ff0000">二维随机向量</font>或<font color="#ff0000">二维随机变量</font>
<font color="#ff0000">离散型</font>随机向量及其<font color="#ff0000">概率分布</font>
如果二维随机向量<span class="equation-text" contenteditable="false" data-index="0" data-equation="(X,Y)"><span></span><span></span></span>所有可能的取值为<span class="equation-text" data-index="1" data-equation="(x_i,y_j),i,j=1,2,\cdots" contenteditable="false"><span></span><span></span></span>,这两个随机变量同时发生的概率可以用函数表示如下:<br><span class="equation-text" data-index="2" data-equation="p_{ij}=P(X=x_i,Y=y_j)=P(X=x_i\ \color{red}{且} \color{black}{}Y=y_j),\quad i,j=1,2,\cdots" contenteditable="false"><span></span><span></span></span><br>且此函数满足如下性质(即概率的三大公理):<br>(1)非负性:<br><span class="equation-text" data-index="3" data-equation="p_{ij}\ge 0" contenteditable="false"><span></span><span></span></span><br>(2)规范性和可加性<br><span class="equation-text" data-index="4" data-equation="\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}p_{ij}=1" contenteditable="false"><span></span><span></span></span><br>则称此函数为<span class="equation-text" data-index="5" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">联合概率质量函数</font>(Joint Probability Mass Function),或者称为<font color="#ff0000">联合分布列</font>,此定义可以推广到多维离散随机变量上去。<br>
<font color="#ff0000">连续型</font>随机向量及其<font color="#ff0000">概率密度</font>
对于某二维随机变量<span class="equation-text" contenteditable="false" data-index="0" data-equation="(X,Y)"><span></span><span></span></span>存在二元函数<span class="equation-text" data-index="1" data-equation="p(x,y)" contenteditable="false"><span></span><span></span></span>满足:<br>(1)非负性:<br><span class="equation-text" data-index="2" data-equation="p(x,y)\ge 0" contenteditable="false"><span></span><span></span></span><br>(2)规范性和可加性(连续的都通过积分来相加):<br><span class="equation-text" data-index="3" data-equation="\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}p(x,y)\mathrm{d}x\mathrm{d}y=1" contenteditable="false"><span></span><span></span></span><br>则称此函数为<span class="equation-text" data-index="4" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">联合概率密度函数</font>(Joint Probability Density Function),或者称为<font color="#ff0000">联合分布密度</font>,此定义可以推广到多维连续随机变量上去。<br>
联合累积分布函数
设<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>是二维随机变量,对于任意实数<span class="equation-text" data-index="1" data-equation="x、y" contenteditable="false"><span></span><span></span></span>,可以定义一个二元函数来表示两个事件同时发生的概率:<br><span class="equation-text" data-index="2" data-equation="F(x,y)=P\Big(\{X\le x\}\ \color{red}{且}\ \color{black}\{Y\le y\}\Big)=P(X\le x, Y\le y)" contenteditable="false"><span></span><span></span></span><br>称为二维随机变量<span class="equation-text" data-index="3" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">联合累积分布函数</font>(Joint Cumulative Distribution Function),如果混合偏导存在的话,那么:<br><span class="equation-text" data-index="4" data-equation="\frac{\partial F(x,y)}{\partial x \partial y}=p(x,y)" contenteditable="false"><span></span><span></span></span><br>得到<span class="equation-text" contenteditable="false" data-index="5" data-equation="p(x,y)"><span></span><span></span></span>就是此分布的概率密度函数。此定义和性质可以推广到多维随机变量。
举例子
二维正态分布
如果二维随机变量(X,Y)的联合概率密度函数为:<br><span class="equation-text" data-index="0" data-equation="\begin{aligned} p(x, y)= & \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}\right.\right.\\ &-\frac{2 \rho\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}} ] \} \end{aligned}" contenteditable="false"><span></span><span></span></span><br>则称<span class="equation-text" data-index="1" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>服从<font color="#ff0000">二维正态分布</font>,记作:<br><span class="equation-text" data-index="2" data-equation="(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)" contenteditable="false"><span></span><span></span></span><br>它含有五个参数<span class="equation-text" data-index="3" data-equation="\mu_1,\mu_2,\sigma_1^2,\sigma_2^2" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="4" data-equation="\rho" contenteditable="false"><span></span><span></span></span>,取值范围分别为:<br><span class="equation-text" data-index="5" data-equation="-\infty<\mu_{1}<\infty,-\infty<\mu_{2}<\infty, \sigma_{1}>0, \sigma_{2}>0,-1 \leqslant \rho \leqslant 1" contenteditable="false"><span></span><span></span></span><br>并且<span class="equation-text" data-index="6" data-equation="\mu_1,\mu_2" contenteditable="false"><span></span><span></span></span>分别是<span class="equation-text" data-index="7" data-equation="X、Y" contenteditable="false"><span></span><span></span></span>的期望;<span class="equation-text" data-index="8" data-equation="\sigma_1^2,\sigma_2^2" contenteditable="false"><span></span><span></span></span>分别是<span class="equation-text" data-index="9" data-equation="X、Y" contenteditable="false"><span></span><span></span></span>的方差;<span class="equation-text" data-index="10" data-equation="\rho" contenteditable="false"><span></span><span></span></span>是<span class="equation-text" contenteditable="false" data-index="11" data-equation="X、Y"><span></span><span></span></span>的相关系数。
3.2 边缘分布
边缘分布函数
如果二维连续随机变量<span class="equation-text" data-index="0" data-equation="(X,Y)"><span></span><span></span></span>的联合累积分布函数为<span class="equation-text" data-index="1" data-equation="F(x,y)"><span></span><span></span></span>,如下可以得到<span class="equation-text" data-index="2" data-equation="X"><span></span><span></span></span>的累积分布函数:<br><span class="equation-text" data-index="3" data-equation="F_X(x)=\lim_{y\to+\infty}F(x,y)=P(X\le x,Y < +\infty)=P(X\le x)"><span></span><span></span></span><br>称为<span class="equation-text" data-index="4" data-equation="X"><span></span><span></span></span>的<font color="#ff0000">边缘累积分布函数</font>(Marginal Cumulative Distribution Function)。可记作:<br><span class="equation-text" data-index="5" data-equation="F_X(x)=F(x,+\infty)"><span></span><span></span></span><br>同理可以得到<span class="equation-text" data-index="6" data-equation="Y"><span></span><span></span></span>的边<font color="#ff0000">缘累积分布函数</font>:<br><span class="equation-text" data-index="7" data-equation="F_Y(y)=F(+\infty, y)"><span></span><span></span></span>
边缘分布律(边缘概率质量函数)<br>
如果二维离散随机变量<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的联合概率质量函数为:<br><span class="equation-text" data-index="1" data-equation="P(X=x_i,Y=y_j),i,j=1,2,\cdots" contenteditable="false"><span></span><span></span></span><br>对<span class="equation-text" data-index="2" data-equation="j" contenteditable="false"><span></span><span></span></span>求和所得的函数:<br><span class="equation-text" data-index="3" data-equation="\sum_{j=1}^{\infty}P(X=x_i,Y=y_j)=P(X=x_i)" contenteditable="false"><span></span><span></span></span><br>称为<span class="equation-text" data-index="4" data-equation="X" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">边缘概率质量函数</font>(Marginal Probability Mass Function),或者称为<font color="#ff0000">边缘分布列</font>。类似的对<span class="equation-text" data-index="5" data-equation="i" contenteditable="false"><span></span><span></span></span>求和所得的函数:<br><span class="equation-text" data-index="6" data-equation="\sum_{i=1}^{\infty}P(X=x_i,Y=y_j)=P(Y=y_j)" contenteditable="false"><span></span><span></span></span><br>称为<span class="equation-text" data-index="7" data-equation="Y" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">边缘概率质量函数</font>。
边缘分布密度(边缘概率密度函数)
如果二维连续随机变量<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的联合概率密度函数为<span class="equation-text" data-index="1" data-equation="p(x,y)" contenteditable="false"><span></span><span></span></span>,则:<br><span class="equation-text" data-index="2" data-equation="p_X(x)=\int_{-\infty}^{+\infty}p(x,y)\mathrm{d}y" contenteditable="false"><span></span><span></span></span><br>称为<span class="equation-text" data-index="3" data-equation="X" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">边缘概率密度函数</font>(Marginal Probability Density Function)。类似的:<br><span class="equation-text" data-index="4" data-equation="p_Y(y)=\int_{-\infty}^{+\infty}p(x,y)\mathrm{d}x" contenteditable="false"><span></span><span></span></span><br>称为<span class="equation-text" data-index="5" data-equation="Y" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">边缘概率密度函数</font>。
3.3 条件分布
条件分布律(条件概率质量函数)
设<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>是二维离散型随机变量,对于固定的<span class="equation-text" data-index="1" data-equation="j" contenteditable="false"><span></span><span></span></span>,若<span class="equation-text" data-index="2" data-equation="P(Y=y_j)\ge 0" contenteditable="false"><span></span><span></span></span>,则称:<br><span class="equation-text" data-index="3" data-equation="P\left(X=x_{i} | Y=y_{j}\right)=\frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(Y=y_{j}\right)}, i=1,2, \cdots" contenteditable="false"><span></span><span></span></span><br>为<span class="equation-text" data-index="4" data-equation="Y=y_j" contenteditable="false"><span></span><span></span></span>条件下的随机变量<span class="equation-text" data-index="5" data-equation="X" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">条件概率质量函数</font>。同样的对于固定的i,若<span class="equation-text" data-index="6" data-equation="P(X=x_i)\ge 0" contenteditable="false"><span></span><span></span></span>,则称:<br><span class="equation-text" data-index="7" data-equation="P\left(Y=y_{j} | X=x_{i}\right)=\frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(X=x_{i}\right)}, j=1,2, \cdots" contenteditable="false"><span></span><span></span></span><br>为<span class="equation-text" data-index="8" data-equation="X=x_i" contenteditable="false"><span></span><span></span></span>条件下的随机变量<span class="equation-text" data-index="9" data-equation="Y" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">条件概率质量函数</font>。
<font color="#000000">条件分布密度(条件概率密度函数)</font><br>
设二维连续型随机变量<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的概率密度函数为<span class="equation-text" data-index="1" data-equation="p(x,y)" contenteditable="false"><span></span><span></span></span>,若对于固定的<span class="equation-text" data-index="2" data-equation="y" contenteditable="false"><span></span><span></span></span>有边缘概率密度函数<span class="equation-text" data-index="3" data-equation="p_Y(y) > 0" contenteditable="false"><span></span><span></span></span>,则:<br><span class="equation-text" data-index="4" data-equation="p_{X|Y}(x\ |\ y)=\frac{p(x,y)}{p_Y(y)}" contenteditable="false"><span></span><span></span></span><br>为<span class="equation-text" data-index="5" data-equation="Y=y" contenteditable="false"><span></span><span></span></span>条件下的随机变量<span class="equation-text" data-index="6" data-equation="X" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">条件概率密度函数</font>。对应的<font color="#ff0000">条件累积分布函数</font>为:<br><span class="equation-text" data-index="7" data-equation="F_{X|Y}(x\ |\ y)=\int_{-\infty}^{x}\frac{p(u,y)}{p_Y(y)}\mathrm{d}u" contenteditable="false"><span></span><span></span></span><br>同样的道理,以<span class="equation-text" data-index="8" data-equation="X=x" contenteditable="false"><span></span><span></span></span>为条件有:<br><span class="equation-text" data-index="9" data-equation="p_{Y|X}(y\ |\ x)=\frac{p(x,y)}{p_X(x)}" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="10" data-equation="F_{Y|X}(y\ |\ x)=\int_{-\infty}^{y}\frac{p(x,u)}{p_X(x)}\mathrm{d}u"><span></span><span></span></span><br>
3.4 随机变量的独立性
设随机变量<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的联合分布函数为<span class="equation-text" data-index="1" data-equation="F(x,y)" contenteditable="false"><span></span><span></span></span>,边缘分布函数为<span class="equation-text" data-index="2" data-equation="F_X(x),F_Y(y)" contenteditable="false"><span></span><span></span></span>,若对任意实数<span class="equation-text" data-index="3" data-equation="x,y" contenteditable="false"><span></span><span></span></span>,有<span class="equation-text" data-index="4" data-equation="P\{X \leq x, Y \leq y\}=P\{X \leq x\} P\{Y \leq y\}" contenteditable="false"><span></span><span></span></span>,即:<span class="equation-text" data-index="5" data-equation="F(x, y)=F_{X}(x) F_{Y}(y)" contenteditable="false"><span></span><span></span></span>,则称随机变量<span class="equation-text" contenteditable="false" data-index="6" data-equation="X,Y"><span></span><span></span></span>相互独立。<br>
3.5 随机变量的函数分布
随机变量的和的分布
卷积公式
离散
设<span class="equation-text" data-index="0" data-equation="X、Y" contenteditable="false"><span></span><span></span></span>为两个相互独立的离散随机变量,取值范围为<span class="equation-text" data-index="1" data-equation="0,1,2,\cdots" contenteditable="false"><span></span><span></span></span>,则其和的概率质量函数为:<br><span class="equation-text" data-index="2" data-equation="P(X+Y=k)=\sum_{i=0}^{k}P(X=i)P(Y=k-i)" contenteditable="false"><span></span><span></span></span><br>这个概率等式称为离散场合下的<font color="#ff0000">卷积公式</font>。<br>
连续
设<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>为二维连续型随机变量,概率密度函数为<span class="equation-text" data-index="1" data-equation="p(x,y)" contenteditable="false"><span></span><span></span></span>,则<span class="equation-text" data-index="2" data-equation="Z=X+Y" contenteditable="false"><span></span><span></span></span>仍为连续型随机变量,其概率密度为:<br><span class="equation-text" data-index="3" data-equation="p_{X+Y}(z)=\int_{-\infty}^{+\infty}p(z-y,y)\mathrm{d}y=\int_{-\infty}^{+\infty}p(x,z-x)\mathrm{d}x" contenteditable="false"><span></span><span></span></span><br>若<span class="equation-text" data-index="4" data-equation="X、Y" contenteditable="false"><span></span><span></span></span>为相互独立,其边缘密度函数分别为<span class="equation-text" data-index="5" data-equation="p_X(x)" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="6" data-equation="p_Y(y)" contenteditable="false"><span></span><span></span></span>,则其和<span class="equation-text" data-index="7" data-equation="Z=X+Y" contenteditable="false"><span></span><span></span></span>的概率密度函数为:<br><span class="equation-text" data-index="8" data-equation="p_Z(z)=\int_{-\infty}^{+\infty}p_X(z-y)p_Y(y)\mathrm{d}y=\int_{-\infty}^{+\infty}p_X(x)p_Y(z-x)\mathrm{d}x" contenteditable="false"><span></span><span></span></span><br>上面两个概率等式称为连续场合下的<font color="#ff0000">卷积公式</font>。
随机变量的极值的分布
设<span class="equation-text" data-index="0" data-equation="X_1、X_2、\cdots,X_n" contenteditable="false"><span></span><span></span></span>是相互独立的<span class="equation-text" data-index="1" data-equation="n" contenteditable="false"><span></span><span></span></span>个随机变量,各自的累积分布函数为:<br><span class="equation-text" data-index="2" data-equation="X_i\sim F_i(x),\quad 1,2,\cdots,n" contenteditable="false"><span></span><span></span></span><br>若<span class="equation-text" data-index="3" data-equation="Y=\max(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>,其累积分布函数为:<br><span class="equation-text" data-index="4" data-equation="F_Y(y)=\prod_{i=1}^{n}F_i(y)" contenteditable="false"><span></span><span></span></span><br>若<span class="equation-text" data-index="5" data-equation="Z=\min(X_1,X_2,\cdots,X_n)" contenteditable="false"><span></span><span></span></span>,其累积分布函数为:<br><span class="equation-text" contenteditable="false" data-index="6" data-equation="F_Z(z)=1-\prod_{i=1}^{n}\Big(1-F_i(z)\Big)"><span></span><span></span></span>
4 随机变量的数字特征
4.1 数学期望
定义
离散型
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X)=\sum_{i=1}^{\infty}x_ip(x_i)"><span></span><span></span></span>
连续型
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X)=\int_{-\infty}^{+\infty}xp(x)\mathrm{d}x"><span></span><span></span></span>
性质
常数的期望
若<span class="equation-text" contenteditable="false" data-index="0" data-equation="c"><span></span><span></span></span>为常数,则:<br><span class="equation-text" data-index="1" data-equation="E(c)=c" contenteditable="false"><span></span><span></span></span>
推出:<span class="equation-text" contenteditable="false" data-index="0" data-equation="E\Big(E(X)\Big)=E(X)"><span></span><span></span></span>
随机变量函数的期望
一维随机变量
设<span class="equation-text" data-index="0" data-equation="Y" contenteditable="false"><span></span><span></span></span>是随机变量<span class="equation-text" data-index="1" data-equation="X" contenteditable="false"><span></span><span></span></span>的函数<span class="equation-text" data-index="2" data-equation="Y=g(X)" contenteditable="false"><span></span><span></span></span>(<span class="equation-text" data-index="3" data-equation="g" contenteditable="false"><span></span><span></span></span>是连续函数)。<br>(1)若<span class="equation-text" contenteditable="false" data-index="4" data-equation="X"><span></span><span></span></span>为离散随机变量,则(设下式中的级数绝对收敛):<br><span class="equation-text" data-index="5" data-equation="E(Y)=E\left[g(X)\right]=\sum_i g(x_i)p(x_i)" contenteditable="false"><span></span><span></span></span><br>(2)若<span class="equation-text" data-index="6" data-equation="X" contenteditable="false"><span></span><span></span></span>为连续随机变量,则(设下式中的积分绝对收敛):<br><span class="equation-text" data-index="7" data-equation="E(Y)=E\left[g(X)\right]=\int_{-\infty}^{+\infty}g(x)p(x)\mathrm{d}x" contenteditable="false"><span></span><span></span></span><br>
多维随机变量
设<span class="equation-text" data-index="0" data-equation="Z" contenteditable="false"><span></span><span></span></span>是随机变量<span class="equation-text" data-index="1" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>的函数<span class="equation-text" data-index="2" data-equation="Z=g(X,Y)" contenteditable="false"><span></span><span></span></span>(<span class="equation-text" data-index="3" data-equation="g" contenteditable="false"><span></span><span></span></span>是连续函数)。<br>(1)若<span class="equation-text" data-index="4" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>为离散随机变量,则(设下式中的级数绝对收敛):<br><span class="equation-text" data-index="5" data-equation="E(Z)=E\left[g(X,Y)\right]=\sum_j\sum_i g(x_i,y_j)p(x_i,y_j)" contenteditable="false"><span></span><span></span></span><br>(2)若<span class="equation-text" data-index="6" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>为连续随机变量,则(设下式中的积分绝对收敛):<br><span class="equation-text" contenteditable="false" data-index="7" data-equation="E(Z)=E\left[g(X,Y)\right]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)p(x,y)\mathrm{d}x\mathrm{d}y"><span></span><span></span></span>
线性的数学期望
齐次性
对于任意常数<span class="equation-text" contenteditable="false" data-index="0" data-equation="a"><span></span><span></span></span>有:<br><span class="equation-text" data-index="1" data-equation="E(aX)=aE(X)" contenteditable="false"><span></span><span></span></span>
可加性
对于任意两个函数<span class="equation-text" contenteditable="false" data-index="0" data-equation="g_1(X)、g_2(X)"><span></span><span></span></span>有:<br><span class="equation-text" data-index="1" data-equation="E\left[g_1(X)+g_2(X)\right]=E\left[g_1(X)\right]+E\left[g_2(X)\right]" contenteditable="false"><span></span><span></span></span>
对于多维也成立:<br><span class="equation-text" data-index="0" data-equation="E(X+Y)=E(X)+E(Y)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" contenteditable="false" data-index="1" data-equation="E(X_1+X_2+\cdots+X_n)=E(X_1)+E(X_2)+\cdots+E(X_n)"><span></span><span></span></span>
独立的数学期望
设<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>为二维独立随机变量,则有:<br><span class="equation-text" data-index="1" data-equation="E(XY)=E(X)E(Y)" contenteditable="false"><span></span><span></span></span><br>这个结论可以推广到<span class="equation-text" contenteditable="false" data-index="2" data-equation="n"><span></span><span></span></span>维独立随机变量:<br><span class="equation-text" data-index="3" data-equation="E\left(X_{1} X_{2} \cdots X_{n}\right)=E\left(X_{1}\right) E\left(X_{2}\right) \cdots E\left(X_{n}\right)" contenteditable="false"><span></span><span></span></span>
重要不等式
施瓦茨不等式
对任意随机变量<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>与<span class="equation-text" contenteditable="false" data-index="1" data-equation="Y"><span></span><span></span></span>都有:<br><span class="equation-text" data-index="2" data-equation="\Big[E(XY)\Big]^2 \le E(X^2)E(Y^2)" contenteditable="false"><span></span><span></span></span>
4.2 方差
方差
定义
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Var(X)=E\left[\Big(X-E(X)\Big)^2\right]"><span></span><span></span></span>
令<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X)=\mu"><span></span><span></span></span>,则:<span class="equation-text" data-index="1" data-equation="Var(X)=E\left[(X-\mu)^2\right]" contenteditable="false"><span></span><span></span></span>
简化计算公式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Var(X)=E\left(X^2\right)-\mu^2"><span></span><span></span></span>
推导过程:<span class="equation-text" contenteditable="false" data-index="0" data-equation="\begin{aligned} Var(X) &=E\left[\big(X-\mu\big)^2\right]\\ &=E\left[X^2-2X\mu+\mu^2\right]\\ &=E(X^2)-2\mu^2+\mu^2\\ &=E\left(X^2\right)-\mu^2\end{aligned}"><span></span><span></span></span>
性质
常数的方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Var(c)=0"><span></span><span></span></span>
<font color="#ff0000">非线性</font>的方差
若<span class="equation-text" contenteditable="false" data-index="0" data-equation="a、b"><span></span><span></span></span>为常数,则:<br><span class="equation-text" data-index="1" data-equation="Var(aX+b)=a^2Var(X)" contenteditable="false"><span></span><span></span></span>
独立的方差
设<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>为二维独立随机变量,则有:<br><span class="equation-text" data-index="1" data-equation="Var(X\pm Y)=Var(X)+Var(Y)" contenteditable="false"><span></span><span></span></span><br>这个结论可以推广到<span class="equation-text" contenteditable="false" data-index="2" data-equation="n"><span></span><span></span></span>维独立随机变量:<br><span class="equation-text" data-index="3" data-equation="Var\left(X_{1}\pm X_{2}\pm \cdots\pm X_{n}\right)=Var\left(X_{1}\right) +Var\left(X_{2}\right)+\cdots+Var\left(X_{n}\right)" contenteditable="false"><span></span><span></span></span>
方差为0
<span class="equation-text" data-index="0" data-equation="Var(X)=0\iff " contenteditable="false"><span></span><span></span></span>存在常数<span class="equation-text" data-index="1" data-equation="c" contenteditable="false"><span></span><span></span></span>使得<span class="equation-text" contenteditable="false" data-index="2" data-equation=" P(X=c)=1"><span></span><span></span></span>
标准差
定义
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sigma(X)=\sqrt{Var(X)}"><span></span><span></span></span>
常见随机变量的方差
离散型
连续型
4.3 协方差与相关系数
定义
设<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>是一个二维随机变量,若<span class="equation-text" data-index="1" data-equation="E\Big[(X-\mu_X)(Y-\mu_Y)\Big]" contenteditable="false"><span></span><span></span></span>存在,则称此数学期望为<span class="equation-text" data-index="2" data-equation="X" contenteditable="false"><span></span><span></span></span>与<span class="equation-text" contenteditable="false" data-index="3" data-equation="Y"><span></span><span></span></span>的<font color="#ff0000">协方差</font>(Covariance),记作:<br><span class="equation-text" data-index="4" data-equation="Cov(X,Y)=E\Big[(X-\mu_X)(Y-\mu_Y)\Big]" contenteditable="false"><span></span><span></span></span><br>特别地有<span class="equation-text" data-index="5" data-equation="Cov(X,X)=Var(X)" contenteditable="false"><span></span><span></span></span>。<br>
很显然会有:<br><span class="equation-text" data-index="0" data-equation="Cov(X,Y) > 0" contenteditable="false"><span></span><span></span></span>时,<span class="equation-text" data-index="1" data-equation="X、Y" contenteditable="false"><span></span><span></span></span>正相关,即两者有同时增加或者减少的倾向<br><span class="equation-text" data-index="2" data-equation="Cov(X,Y) < 0" contenteditable="false"><span></span><span></span></span>时,<span class="equation-text" data-index="3" data-equation="X、Y" contenteditable="false"><span></span><span></span></span>负相关,即两者有反向增加或者减少的倾向<br><span class="equation-text" data-index="4" data-equation="Cov(X,Y) = 0" contenteditable="false"><span></span><span></span></span>时,<span class="equation-text" contenteditable="false" data-index="5" data-equation="X、Y"><span></span><span></span></span>不相关,不过和独立还是有区别的,这点我们后面再论述
性质
化简
可以通过下式来化简运算:<br><span class="equation-text" data-index="0" data-equation="Cov(X,Y)=E(XY)-E(X)E(Y)" contenteditable="false"><span></span><span></span></span><br>据此马上可以得到一个推论:<br><span class="equation-text" contenteditable="false" data-index="1" data-equation="Cov(X,Y)=Cov(Y,X)"><span></span><span></span></span>
方差
对于任意的二维随机变量<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>有:<br><span class="equation-text" data-index="1" data-equation="Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)" contenteditable="false"><span></span><span></span></span><br><span class="equation-text" data-index="2" data-equation="Var(X-Y)=Var(X)+Var(Y)-2Cov(X,Y)" contenteditable="false"><span></span><span></span></span><br>所以当<span class="equation-text" contenteditable="false" data-index="3" data-equation="(X,Y)"><span></span><span></span></span>为二维不相关随机变量时,有:<br><span class="equation-text" data-index="4" data-equation="Var(X\pm Y)=Var(X)+Var(Y)" contenteditable="false"><span></span><span></span></span>
分配率<br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(X_1+X_2,Y)=Cov(X_1, Y)+Cov(X_2,Y)"><span></span><span></span></span>
数乘
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(aX+c,bY+d)=abCov(X, Y)"><span></span><span></span></span>
独立必不相关
根据刚才的性质:<br><span class="equation-text" data-index="0" data-equation="Cov(X,Y)=E(XY)-E(X)E(Y)" contenteditable="false"><span></span><span></span></span><br>如果<span class="equation-text" data-index="1" data-equation="X、Y" contenteditable="false"><span></span><span></span></span>独立,则有:<br><span class="equation-text" data-index="2" data-equation="E(XY)=E(X)E(Y)\implies Cov(X,Y)=0" contenteditable="false"><span></span><span></span></span><br>所以:<br>独立<span class="equation-text" contenteditable="false" data-index="3" data-equation="\implies "><span></span><span></span></span>不相关
不相关的充要条件
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\rho_{XY}=0"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="cov(X,Y)=0"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(XY)=E(X)E(Y)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X+Y)=D(X)+D(Y)"><span></span><span></span></span>
相关系数
定义
对于二维随机变量<span class="equation-text" contenteditable="false" data-index="0" data-equation="(X,Y)"><span></span><span></span></span>,各自的方差为:<br><span class="equation-text" data-index="1" data-equation="Var(X)=\sigma^2_X,\quad Var(Y)=\sigma^2_Y" contenteditable="false"><span></span><span></span></span><br>则:<br><span class="equation-text" data-index="2" data-equation="\rho_{XY}=\frac{Cov(X,Y)}{\sigma_X\sigma_Y}" contenteditable="false"><span></span><span></span></span><br>称为随机变量<span class="equation-text" data-index="3" data-equation="X" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" data-index="4" data-equation="Y" contenteditable="false"><span></span><span></span></span>的<font color="#ff0000">相关系数</font>。
性质
有界性
对于任意的二维随机变量<span class="equation-text" data-index="0" data-equation="(X,Y)" contenteditable="false"><span></span><span></span></span>,若相关系数存在,则:<br><span class="equation-text" contenteditable="false" data-index="1" data-equation="-1\le\rho_{XY}\le 1"><span></span><span></span></span>
有界性让比较有了一个范围,我们可以得到如下结论:<br><span class="equation-text" data-index="0" data-equation="\rho > 0" contenteditable="false"><span></span><span></span></span>:正相关,且<span class="equation-text" data-index="1" data-equation="\rho=1" contenteditable="false"><span></span><span></span></span>的时候,正相关性最大,称为<font color="#ff0000">完全正相关</font><br><span class="equation-text" data-index="2" data-equation="\rho < 0" contenteditable="false"><span></span><span></span></span>:负相关,且<span class="equation-text" data-index="3" data-equation="\rho=-1" contenteditable="false"><span></span><span></span></span>的时候,负相关性最大,称为<font color="#ff0000">完全负相关</font><br><span class="equation-text" data-index="4" data-equation="\rho = 0" contenteditable="false"><span></span><span></span></span>:不相关
线性相关
<span class="equation-text" data-index="0" data-equation="|\rho_{XY}|=1\iff" contenteditable="false"><span></span><span></span></span> 存在常数<span class="equation-text" data-index="1" data-equation="a(\ne0)、b" contenteditable="false"><span></span><span></span></span> 使得<span class="equation-text" contenteditable="false" data-index="2" data-equation="P(Y=aX+b)=1"><span></span><span></span></span>
4.4 矩
一维随机变量<span class="equation-text" contenteditable="false" data-index="0" data-equation="X"><span></span><span></span></span>
原点矩
如果<span class="equation-text" data-index="0" data-equation="E(X^k),\quad k=1, 2, \cdots" contenteditable="false"><span></span><span></span></span>存在,称之为随机变量<span class="equation-text" contenteditable="false" data-index="1" data-equation="X"><span></span><span></span></span>的<span class="equation-text" data-index="2" data-equation="k" contenteditable="false"><span></span><span></span></span>阶原点矩
举例子
<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>的数学期望<span class="equation-text" data-index="1" data-equation="E(X)" contenteditable="false"><span></span><span></span></span>是<span class="equation-text" contenteditable="false" data-index="2" data-equation="X"><span></span><span></span></span>的一阶原点矩
中心矩
如果<span class="equation-text" data-index="0" data-equation="E\{[X-E(X)]^k\},\quad k=1, 2, \cdots" contenteditable="false"><span></span><span></span></span>存在,称之为随机变量<span class="equation-text" data-index="1" data-equation="X" contenteditable="false"><span></span><span></span></span>的<span class="equation-text" contenteditable="false" data-index="2" data-equation="k"><span></span><span></span></span>阶中心矩
举例子
<span class="equation-text" data-index="0" data-equation="X" contenteditable="false"><span></span><span></span></span>的方差<span class="equation-text" data-index="1" data-equation="D(X)" contenteditable="false"><span></span><span></span></span>是<span class="equation-text" contenteditable="false" data-index="2" data-equation="X"><span></span><span></span></span>的二阶中心矩
二维随机变量<span class="equation-text" contenteditable="false" data-index="0" data-equation="X、Y"><span></span><span></span></span>
原点矩
如果<span class="equation-text" data-index="0" data-equation="E(X^kY^l),\quad k=1, 2, \cdots" contenteditable="false"><span></span><span></span></span>存在,称之为随机变量<span class="equation-text" data-index="1" data-equation="X和Y" contenteditable="false"><span></span><span></span></span>的<span class="equation-text" data-index="2" data-equation="k+l" contenteditable="false"><span></span><span></span></span>阶混合原点矩
中心矩
如果<span class="equation-text" data-index="0" data-equation="E\{[X-E(X)]^k[Y-E(Y)]^l\},\quad k=1, 2, \cdots" contenteditable="false"><span></span><span></span></span>存在,称之为随机变量<span class="equation-text" data-index="1" data-equation="X和Y" contenteditable="false"><span></span><span></span></span>的<span class="equation-text" data-index="2" data-equation="k+l" contenteditable="false"><span></span><span></span></span>阶混合中心矩
举例子
<span class="equation-text" data-index="0" data-equation="X和Y" contenteditable="false"><span></span><span></span></span>的协方差<span class="equation-text" data-index="1" data-equation="cov(X,Y)" contenteditable="false"><span></span><span></span></span>是<span class="equation-text" contenteditable="false" data-index="2" data-equation="X和Y"><span></span><span></span></span>的二阶混合中心矩
0 条评论
下一页