自考概率论与数理统计(二)(02197)
2023-07-10 14:04:16 6 举报
AI智能生成
自考概率论与数理统计(二)(02197)每章核心重点
作者其他创作
大纲/内容
第一章 随机事件与概率
随机事件
随机事件与关系运算
事件的包含与相等
和事件
积事件
差事件
事件A发生且B不发生的事件,记作A-B
互不相容事件
对立事件
A的逆的逆 = A
全集的逆 = 空集,空集的逆 = 全集
A-B = A∩B的逆 = A - AB
运算律
交换律
结合律
分配律
对偶律
概率
古典概型
概率的定义和性质
性质1
0≤P(A)≤1,P(∅)=0
性质2
P(A∪B)=P(A)+P(B)-P(AB)
A与B互不相容时,P(A∪B)=P(A)+P(B)
性质3
P(B-A) =P(B)-P(AB)
当B包含A时,P(B)-P(A)=P(B)-P(A),P(B)≥P(A)
条件概率
条件概率与乘法公式
条件概率公式
P(A|B)=P(AB)/P(B)
乘法公式
P(B)P(A|B)=P(AB)
全概率公式与贝叶斯公式
全概率公式
贝叶斯公式
事件的独立性
事件的独立性
性质4
若P(AB) = P(A)P(B),则称A与B相互独立
性质5
设P(A)>0,A与B相互独立的充分必要条件是P(B)=P(B|A)
设P(B)>0,A与B相互独立的充分必要条件是P(A)=P(A|B)
性质6
若A与B相互独立,则A与<span class="equation-text" data-index="0" data-equation="\overline{B}" contenteditable="false"><span></span><span></span></span>,<span class="equation-text" data-index="1" data-equation="\overline{A}" contenteditable="false"><span></span><span></span></span>与B,<span class="equation-text" data-index="2" data-equation="\overline{A}" contenteditable="false"><span></span><span></span></span>和<span class="equation-text" contenteditable="false" data-index="3" data-equation="\overline{B}"><span></span><span></span></span>的逆都相互独立
P(A∪B)=1-P(A逆)-P(B逆)
n重伯努利实验
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_{n}k = C_{n}^{k} P^k(1-P)^{n-k}"><span></span><span></span></span>
第二章 随机变量及其概率分布
离散型随机变量
离散型随机变量及其分布律
性质
Pk≥0,k=1,2,3,4,....
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sum_{k = 1}^{\infty } P_{k} = 1"><span></span><span></span></span>
0-1分布
0<p<1,q=1-p,称x服从0-1分布
二项分布
0<p<1,p+q=1,称X服从参数为<font color="#e57373">n,p</font>的二项分布,<font color="#e57373">X~B(n,p)</font>,<font color="#e57373">n</font>为次数,<font color="#e57373">p</font>为概率
n = 1时,X服从0-1分布,0-1分布式二项分布的特例
泊松定理
λ = np
泊松分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{\lambda ^k}{k!}e^{-\lambda }"><span></span><span></span></span>
λ>0,X服从参数为λ的泊松分布,X~P(λ)
随机变量的分布函数
分布函数的概念
F(x)=P{X≤x}
分布函数的性质
性质
0≤F(x)≤1
F(x)是不减函数,即对任意的x1<x2有F(x1)<F(x2)
F(-∞) = 0,F(+∞) = 1
F(x)右连续
分布函数F(x)重要事件概率
F(b) = P{X≤b}
F(b) -F(a) = P{a < X ≤ b},其中a < b
1-F(b) = P{X > b}
连续型随机变量及其概率密度
定义
若对于随机变量X的分布函数F(x),存在非负数f(x),使得对任意实数x,有<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{-\infty }^{x} f(t)dt"><span></span><span></span></span>,<br>则称X为连续型随机变量,并称f(x)为X的的概率密度函数,简称概率密度<br>
性质
f(x)≥0
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\int_{-\infty }^{+\infty} f(x)dx = 1"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{a < x\le b \} = F(b)-F(a) = \int_{a }^{b} f(x)dx ,a \le b"><span></span><span></span></span>
设x为f(x)的连续点,则F'(x) = f(x)
均匀分布
X服从区间[a,b]的均匀分布X~U(a,b)
概率密度
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x)=\left\{\begin{matrix}\frac{1}{b-a},a\le x\le b \\0,其他\end{matrix}\right."><span></span><span></span></span>
分布函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x)=\left\{\begin{matrix}0,x\le a\\\frac{x-a}{b-a},a< x< b \\1,x\ge b\end{matrix}\right."><span></span><span></span></span>
概率公式
<span style="font-size: inherit;">X~U(a,b),a≤c<d≤b,即<span class="equation-text" contenteditable="false" data-index="0" data-equation="[c,d]\subset [a,b]"><span></span><span></span></span></span><br>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{c < x\le d \} = \frac{d-c}{b-a}"><span></span><span></span></span>
指数分布
<span class="equation-text" data-index="0" data-equation="\lambda" contenteditable="false"><span></span><span></span></span>>0为常数,则称X服从参数为<span class="equation-text" data-index="1" data-equation="\lambda" contenteditable="false"><span></span><span></span></span>的指数分布,简记为X~E(<span class="equation-text" contenteditable="false" data-index="2" data-equation="\lambda"><span></span><span></span></span>)
概率密度
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x)=\left\{\begin{matrix}\lambda e^{-\lambda x} ,x>0 \\0,x\le 0\end{matrix}\right."><span></span><span></span></span>
分布函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x)=\left\{\begin{matrix}1-e^{-\lambda x},x>0 \\0,x\le 0\end{matrix}\right."><span></span><span></span></span>
正态分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\mu ,\sigma ^2为常数,-\infty <\mu<+\infty ,\sigma >0,则称X服从参数为\mu ,\sigma ^2的正态分布,简记为X\sim U(\mu,\sigma ^2)"><span></span><span></span></span>
概率密度
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x ) =\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(x-\mu )^2}{2\sigma^2 }}"><span></span><span></span></span>
分布函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x) =\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(t-\mu )^2}{2\sigma^2 }}"><span></span><span></span></span>
性质
曲线关于直接x = μ 对称,任何h>0有 P{μ-h<X≤μ} = P{μ<X≤μ+h}
x = μ时,取到最大值
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(\mu ) =\frac{1}{\sqrt{2\pi }\sigma }"><span></span><span></span></span>
当σ给定时,μ1<μ2时,两条曲线沿着x轴平移
当μ给定时,σ1<σ2时,σ小图形变尖且分散程度小,σ大图形平缓且分散程度大
标准正态分布
当μ = 0,σ = 1时的正态分布称为标准正态分布N(0,1)
概率密度
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\varphi (x) =\frac{1}{\sqrt{2\pi } }e^{-\frac{x^2}{2}}"><span></span><span></span></span>
性质
关于y轴对称,x = 0取得最大值<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{1}{\sqrt{2\pi } }"><span></span><span></span></span>
分布函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Phi(x) =\frac{1}{\sqrt{2\pi } }\int_{-\infty }^{x} e^{-\frac{t^2}{2}}dt"><span></span><span></span></span>
性质
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Phi(-x) = 1- \Phi(x) "><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\Phi(0) = \frac{1}{2}"><span></span><span></span></span>
一般正态分布的分布函数<span class="equation-text" data-index="0" data-equation="F(x)" contenteditable="false"><span></span><span></span></span>与标准正态分布<span class="equation-text" contenteditable="false" data-index="1" data-equation="\Phi(x)"><span></span><span></span></span>的关系
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x) =P\{X\le x\}= \Phi( \frac{x-\mu }{\sigma })"><span></span><span></span></span>
<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{a<X\le b\}= \Phi( \frac{b-\mu }{\sigma })-\Phi( \frac{a-\mu }{\sigma })"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{X>a\}= P\{X\ge a\}= 1-\Phi( \frac{a-\mu }{\sigma })"><span></span><span></span></span>
随机变量函数的概率分布
离散型随机变量函数的概率分布
把满足g(xk) = y的xk所对应的概率相加即可
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{Y=y\} = P\{g(X) = y \} = \sum_{k :g(x_k) = y}^{\infty } P_{k}"><span></span><span></span></span>
连续型随机变量函数的概率分布
定理
设X为连续型随机变量,其概率密度为fx(x),要求Y = g(X)是一个严格单调的可导函数,<br>其值域为(α,β),且g'(x) ≠ 0。记x=h(y)为y=g(x)的反函数,则Y = g(X)的概率密度为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f_y(y)=\left\{\begin{matrix}f_x(h(y))|{h}'(y)|,\alpha <y<\beta \\0,其他\end{matrix}\right."><span></span><span></span></span>
一定要记住求导后是<font color="#e57373">绝对值</font>
第三章 多维随机变量及其概率分布
多维随机变量的概念
二维随机变量及其分布函数
联合分布函数
设(X,Y)是二维随机变量,对任意的实数x,y,二元函数称为X与Y的联合分布函数或二维随机变量(X,Y)的分布函数
二元函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x,y) = P\{X\le x,Y\le y\},-\infty <x,y<+\infty"><span></span><span></span></span>
边缘分布函数
X与Y各自的分布函数分别称为(X,Y)关于X与关于Y的边缘分布函数,记为Fx(x)与Fy(y)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F_{X}(x) = P\{X \le x\} = P\{ X \le x,Y < +\infty \} = F(X,+\infty ) = \lim_{y \to \infty} F(x,y)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F_{Y}(y) = P\{Y \le y\} = P\{ X < +\infty,Y\le y \} = F(+\infty ,y) = \lim_{x \to \infty} F(x,y)"><span></span><span></span></span>
性质
单调性
有界性
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(-\infty ,y) = F(x,-\infty ) = F(-\infty ,-\infty ) = 0"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(+\infty ,+\infty ) = 1"><span></span><span></span></span>
右连续性
非负性
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{x_{1} < X \le x_{2},y_{1} < Y \le y_{2}\} = F(x_{2},y_{2}) - F(x_{2},y_{1}) - F(x_{1},y_{2}) + F(x_{1},y_{1})"><span></span><span></span></span>
二维离散型随机变量的分布律和边缘分布律
分布律
pij = P{X=xi,J = yj},i,j = 1,2,···为二维离散型随机变量(x,y)的分布律
X的边缘分布律
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_{i} = P\{X = x_{i}\} = \sum_{j=1}^{\infty }p_{ij},i = 1,2,..."><span></span><span></span></span>
Y的边缘分布律
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_{j} = P\{Y = y_{i}\} = \sum_{i=1}^{\infty }p_{ij},j = 1,2,..."><span></span><span></span></span>
二维连续型随机变量的概率密度和边缘概率密度
概率密度
设二维连续型随机变量(X,Y)的分布函数为F(x,y),若存在非负可积的二元函数f(x,y),使得对任意的x,y有F(x,y),<br>则称(X,Y)是二维连续型随机变量,并称f(x,y)为(X,Y)的概率密度
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x,y) = \int_{-\infty }^{x} \int_{-\infty }^{y} f(u,v) dudv"><span></span><span></span></span>
性质
非负性
规范性
<span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x,y) = \int_{-\infty }^{+\infty} \int_{-\infty }^{+\infty} f(x,y) dxdy = 1"><span></span><span></span></span>
若f(x,y)在点(x,y)出连续,则有
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{\partial^2 F(x,y)}{\partial x\partial y} = f(x,y)"><span></span><span></span></span>
设D使XOY平面上的一个区域,则二维随机变量(X,Y)落在D内的概率为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{(x,y) \in D \} = \iint\limits_{D}^{} f(x,y) dxdy"><span></span><span></span></span>
均匀分布
设D是平面上的一个有界区域,其面积为S>0,如果二维连续型随机变量(X,Y)的概率密度为f(x,y),则称(X,Y)在区域D上服从均匀分布,<br>记作(X,Y)~Ud。
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x,y) = \left\{\begin{matrix}\frac{1}{S},(x,y) \in D \\0,其他\end{matrix}\right."><span></span><span></span></span>
边缘概率密度
对于二维连续型随机变量(X,Y),其分量X与Y各自的概率密度分别称为(X,Y)关于X与关于Y的边缘概率密度,记为fx(x)与fy(y)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f_x(x,y) = \int_{-\infty }^{+\infty } f(x,y) dy"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f_y(x,y) = \int_{-\infty }^{+\infty } f(x,y) dx"><span></span><span></span></span>
随机变量的独立性
两个随机变量的独立性
设二维随机变量(X,Y)的分布函数为F(x,y),边缘分布函数分别为Fx(x),Fy(y),若对任意x,y有<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="F(x,y) = F_X(x) * F_Y(y)"><span></span><span></span></span>,则称随机变量X和Y相互独立
二维离散型随机变量的独立性
设(X,Y)为二维离散型随机变量,其分布律为<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_{ij} = P\{X = x_i,Y = y_j\}i,j = 1,2,..."><span></span><span></span></span>
边缘分布律为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_{i} = P\{X = x_i\} = \sum_{j = 1}^{\infty }P_{ij},i = 1,2,..."><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P_{j} = P\{Y = y_j\} = \sum_{i = 1}^{\infty }P_{ij},j = 1,2,..."><span></span><span></span></span>
对于(X,Y)的所有的取值xi,yi有<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{X=x_i,Y=y_j\} = P\{X = x_i\} * P\{Y = y_j\}"><span></span><span></span></span><br>
即对应的边缘概率分布相乘
二维连续型随机变量的独立性
二维连续型随机变量(X,Y)的概率密度为f(x,y),关于X与关于Y的边缘概率密度为fx(x)和fy(y),若
<span class="equation-text" contenteditable="false" data-index="0" data-equation="f(x,y) = f_X(x) * f_Y(y)"><span></span><span></span></span>
几乎处处成立,则随机变量X和Y是相互独立的
两个随机变量的函数的分布
两个离散型随机变量的函数的分布
两个相互独立的连续型随机变量之和的概率分布
第四章 随机变量的数字特征
随机变量的数学期待
离散型随机变量的数学期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \sum_{k = 1}^{\infty }X_k P_k"><span></span><span></span></span>
0-1分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = 1 * p + 0 * (1-p) = p"><span></span><span></span></span>
二项分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = np"><span></span><span></span></span>
泊松分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \lambda"><span></span><span></span></span>
连续型随机变量的数学期望
定义
设连续型随机变量X的概率密度为f(x),若广义积分<span class="equation-text" data-index="0" data-equation="E(X) = \int_{-\infty }^{+\infty } xf(x)dx" contenteditable="false"><span></span><span></span></span>绝对收敛,则称积分<span class="equation-text" contenteditable="false" data-index="1" data-equation="E(X) = \int_{-\infty }^{+\infty } xf(x)dx"><span></span><span></span></span>的值为随机变量X的数学期望(简称为期望或均值),记为E(X)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \int_{-\infty }^{+\infty } xf(x)dx"><span></span><span></span></span>
均匀分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \frac{a+b}{2}"><span></span><span></span></span>
指数分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \frac{1}{\lambda }"><span></span><span></span></span>
正态分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \mu"><span></span><span></span></span>
二维随机变量的数学期望
离散型随机变量的数学期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \sum_{i = 1}^{\infty } x_iP_i = \sum_{i = 1}^{\infty }(x_i\sum_{j = 1}^{\infty }p_{ij} ) ,P_{i}为X的边缘分布律"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(Y) = \sum_{j = 1}^{\infty } y_jP_j = \sum_{j = 1}^{\infty }(y_i\sum_{i = 1}^{\infty }p_{ij} ) ,P_{j}为Y的边缘分布律"><span></span><span></span></span>
连续型随机变量的数学期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) = \int_{-\infty }^{+\infty } xf_X(x)dx = \int_{-\infty }^{+\infty }\int_{-\infty }^{+\infty } xf(x,y)dxdy"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(Y) = \int_{-\infty }^{+\infty } yf_Y(y)dy = \int_{-\infty }^{+\infty }\int_{-\infty }^{+\infty } yf(x,y)dxdy"><span></span><span></span></span>
二维随机变量函数的数学期待
离散型随机变量函数的数学期待
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E[g(X,Y)] = \sum_{i = 1}^{\infty } \sum_{j = 1}^{\infty } g(x,y) p_{ij}"><span></span><span></span></span>
连续型随机变量函数的数学期待
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E[g(X,Y)] = \int_{-\infty }^{+\infty } \int_{-\infty }^{+\infty } g(x,y)f(x,y)dxdy"><span></span><span></span></span>
数学期望的性质
设c是常数,则E(c) = c
设X是随机变量,c是常数,则E(cX) = cE(x)
设X,Y均为随机变量,则E(X+Y) = E(X)+E(Y)
设X,Y均为<font color="#e57373">相互独立</font>的随机变量,E(XY) = E(X)·E(Y)
方差
方差的概念
方差公式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = E[X - E(X)]^2"><span></span><span></span></span>
不论X为离散型还是连续型随机变量,通常采用下式计算方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = E(X^2) - [E(x)]^2"><span></span><span></span></span>
常见的随机变量的方差
0-1分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = p(1 - p)"><span></span><span></span></span>
二项分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = np(1 - p)"><span></span><span></span></span>
泊松分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = \lambda"><span></span><span></span></span>
均匀分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = \frac{(b-a)^2}{12}"><span></span><span></span></span>
指数分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = \frac{1}{\lambda ^2}"><span></span><span></span></span>
正态分布
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X) = \sigma ^2"><span></span><span></span></span>
方差的性质
设X是随机变量,c是常数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(c) = 0,D(c+X) = D(X)"><span></span><span></span></span>
设X是随机变量,c是常数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(cX) = c^2D(X)"><span></span><span></span></span>
设X,Y<font color="#e57373">相互独立</font>的随机变量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X+Y) = D(X) + D(Y)"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X-Y) = D(X)+D(-Y) = D(X) + (-1)^2D(Y) = D(X)+D(Y)"><span></span><span></span></span>
协方差与相关系数
协方差
随机变量X与Y的协方差记为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(X,Y) = E[(X -E(X))(Y-E(Y))]"><span></span><span></span></span>
离散型随机变量协方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(X,Y) = \sum_{i = 1}^{\infty } \sum_{j = 1}^{\infty }[x_i - E(x)][y_j-E(Y)]P_{ij}"><span></span><span></span></span>
连续型随机变量协方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(X,Y) = \int_{-\infty}^{+\infty } \int_{-\infty }^{+\infty} [x - E(X)][y - E(Y)]f(x,y)dxdy"><span></span><span></span></span>
不论X为离散型还是连续型随机变量,通常采用下式计算方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(X,Y) = E(XY) - E(X)*E(Y)"><span></span><span></span></span>
如果X = Y
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(X,X) = D(X)"><span></span><span></span></span>
协方性质
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Cov(X,X) = D(X)"><span></span><span></span></span>
Cov(X,C) = 0,C为常数
Cov(X,Y) = Cov(Y,X)
Cov(aX,bY) = abCov(X,Y),a,b为任意常数
Cov(X+Y,Z) = Cov(X,Z)+Cov(Y,Z)
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(X\pm Y) = D(X)+D(Y)+2Cov(X,Y)"><span></span><span></span></span>
若X与Y<font color="#e57373">相互独立</font>,则Cov(X,Y)=0
相关系数
定义
若D(X)>0,D(Y)>0,称<span class="equation-text" contenteditable="false" data-index="0" data-equation="\rho_{xy}"><span></span><span></span></span>为随机变量X与Y的相关系数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\rho_{xy} =\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)} }"><span></span><span></span></span>
性质
<span class="equation-text" contenteditable="false" data-index="0" data-equation=" | \rho | \le 1"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="| \rho | = 1的充分必要条件是存在常数a,b,使P{Y = aX+b},a\ne 0"><span></span><span></span></span>
<span class="equation-text" data-index="0" data-equation="\rho_{xy} =0" contenteditable="false"><span></span><span></span></span>称随机变量X与Y<font color="#e57373">不相关</font>
第五章 大数定律与中心极限定理
切比雪夫不等式
设随机变量X的数学期望E(X)与方差D(X)均存在,则对任意<span class="equation-text" contenteditable="false" data-index="0" data-equation="\varepsilon"><span></span><span></span></span>>0,成立下式
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{|X -E(X) |\ge \varepsilon \}\le \frac{D(X)}{\varepsilon ^2}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{|X -E(X) |< \varepsilon \} \ge 1-\frac{D(X)}{\varepsilon ^2}"><span></span><span></span></span>
中心极限定理
独立同分布序列的中心极限定理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="Y_n = \frac{\sum_{k = 1}^{n} X_k - n\mu }{\sqrt{n\sigma } }"><span></span><span></span></span>
拉普斯拉中心极限定理
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\lim_{n \to \infty } P{\frac{Y_n-np}{\sqrt{np(1-p)} } } \le x"><span></span><span></span></span>
第六章 统计量及其抽样分布
统计量及分布
样本均值及其抽样分布
样本均值
设X1,X2,X3,...,Xn为来自某总体的样本,其算术平均值称为样本均值,一般用<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{X}"><span></span><span></span></span>表示
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{X} = \frac{X_1+X_2+...+X_n}{n} = \frac{1}{n}\sum_{i = 1}^n{X_i}"><span></span><span></span></span>
样本均值数学期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(\overline{X}) = \frac{1}{n}\sum_{i = 1}^n{E(X_i)} = \mu"><span></span><span></span></span>
样本均值方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(\overline{X}) = \frac{1}{n^2}\sum_{i = 1}^n{D(X_i)} = \frac{\sigma^2 }{n}"><span></span><span></span></span>
近似分布服从
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\overline{X} \sim N (\mu ,\frac{\sigma^2}{n} )"><span></span><span></span></span>
样本方差与样本标准差
样本方差
设X1,X2,X3,...,Xn 为取自某总体的样本,则
<span class="equation-text" contenteditable="false" data-index="0" data-equation="S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X-\overline{X} )^2"><span></span><span></span></span>
样本标准差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="S = \sqrt{S^2}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(X) =\mu,D(x) = \sigma^2,X_1,X_2,...,X_n为来自该总体的样本,\overline{X}和S^2分别是样本均值和样本方差,则"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(\overline{X}) = \mu"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(\overline{X}) =\frac{\sigma^2 }{n}"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(S^2) = \sigma^2"><span></span><span></span></span>
此定理表明,样本均值的数学期望与总体的数学期望相同,而样本均值的方差是总体方差的1/n
正态总体的抽样分布
卡方分布
自由度为n的<span class="equation-text" contenteditable="false" data-index="0" data-equation="\chi ^2"><span></span><span></span></span>分布,记为
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\chi ^2\sim \chi ^2(n)"><span></span><span></span></span>
数学期望
<span class="equation-text" contenteditable="false" data-index="0" data-equation="E(\chi ^2) = n"><span></span><span></span></span>
方差
<span class="equation-text" contenteditable="false" data-index="0" data-equation="D(\chi ^2) = 2n"><span></span><span></span></span>
第七章 参数估计
点估计几种方法
矩法估计
用样本均值<span class="equation-text" data-index="0" data-equation="\overline{X}" contenteditable="false"><span></span><span></span></span>估计总体的数学期望E(X),即E(X) =<span class="equation-text" contenteditable="false" data-index="1" data-equation="\overline{X}"><span></span><span></span></span> <br>
用<span class="equation-text" data-index="0" data-equation="S^2_{n}" contenteditable="false"><span></span><span></span></span>估计总体方差D(X),即<span class="equation-text" contenteditable="false" data-index="1" data-equation="\hat{D}(X) = S^2_{n}"><span></span><span></span></span>
点估计的评价标准
无偏性
参数的区间估计
置信区间
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sigma 已知时,\mu 的置信区间"><span></span><span></span></span>
估计函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{(\overline{X} -\mu) }{\sigma } \sqrt{n}"><span></span><span></span></span>
置信区间
<br><span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{\overline{X} - u_{\frac{a}{2} }\frac{\sigma }{\sqrt{n} }\le\mu \le \overline{X} + u_{\frac{a}{2} }\frac{\sigma }{\sqrt{n} } \} = 1-a"><span></span><span></span></span>
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\sigma 未知时,\mu 的置信区间"><span></span><span></span></span>
估计函数
<span class="equation-text" contenteditable="false" data-index="0" data-equation="\frac{(\overline{X}-\mu) }{S} \sqrt{n}"><span></span><span></span></span>
置信区间
<span class="equation-text" contenteditable="false" data-index="0" data-equation="P\{\overline{X} - u_{\frac{a}{2} }(n-1)\frac{S}{\sqrt{n} }\le\mu \le \overline{X} + u_{\frac{a}{2} }(n-1)\frac{S }{\sqrt{n} } \} = 1-a"><span></span><span></span></span>
第八章 假设检验
假设检验的基本思想和概念
两类错误
一类错误:拒真错误
H0成立的情况下,样本值落入W,因而被H0拒绝 .
二类错误:取伪错误
H0不成立情况下,样本值未落入W,因而被H0所接受
正态总体均值的假设检验
u检验
方差已知时,单个正态总体均值检验
检验统计量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="U = \frac{\overline{X} - \mu_0 }{\frac{\sigma_0 }{\sqrt{n} } }"><span></span><span></span></span>
拒绝域
<span class="equation-text" contenteditable="false" data-index="0" data-equation="W = (-\infty ,-u_{\frac{a}{2}})\cup (u_{\frac{a}{2}},+\infty)"><span></span><span></span></span>
t检测
方差未知时,单个正态总体均值检验
检验统计量
<span class="equation-text" contenteditable="false" data-index="0" data-equation="U = \frac{\overline{X} - \mu_0 }{\frac{S }{\sqrt{n} } }"><span></span><span></span></span>
拒绝域
<span class="equation-text" contenteditable="false" data-index="0" data-equation="W = (-\infty ,-t_{\frac{a}{2}})\cup (t_{\frac{a}{2}},+\infty)"><span></span><span></span></span>
自由度
n-1
核心表格P204
0 条评论
下一页