Llama 3模型架构图
2026-02-02 20:21:40 0 举报
Unlocking SOTA Performance: Inside the Llama 3 Architecture Dive into the structural brilliance of Meta's Llama 3, the open-source LLM redefining industry standards. This visualization deconstructs the model's high-performance backbone, featuring a highly optimized Decoder-only Transformer architecture. Key architectural highlights include Grouped Query Attention (GQA) for superior inference speed without sacrificing quality, Rotary Positional Embeddings (RoPE) for robust context handling, and the SwiGLU activation function for enhanced learning capacity. Whether you are an AI researcher or a curious developer, understanding these core modules—visualized here from global data flow to granular tensor operations—is essential for mastering the next generation of GenAI. #Llama3 #AIArchitecture #DeepLearning #LLM #MetaAI #DataScience #GQA #Transformer
作者其他创作
大纲/内容
Linear Head (Vocab Size)
Softmax (Scores)
GQA_Process
Final RMSNorm
RoPE (Rotary Embeddings)
Down Projection
Softmax
RMSNorm
Tokenizer
Attention Output
Single_Decoder_Layer_Structure
Embedding Layer
SwiGLU_Block
Add
GQA (Grouped Query Attention)
Wq Projection
FFN Output
SwiGLU (Feed Forward)
Up Projection
Direct_In
Layer Input
Output_Processing
Wv Projection
Decoder Layer 1 (Standard)
Element-wise Multiply
Input Text
Dot Product (Q * KT)
Positional_Encoding
Masking
Wo Output Projection
Output Probabilities
Wk Projection
Projections
Weighted Sum (Scores * V)
SiLU Activation (Swish)
Input_Processing
Gate Projection
Transformer_Backbone
Decoder Layer N (Standard)
收藏
收藏
0 条评论
下一页